1
|7 WASA CR- 122297 -

Reproduced by

NATIONAL TECHNI
INFORMATION SER\c/:iACIiE

Springfield, Va. 22151

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

- ___v_.fw*.”""'“."—" e NV
[N72-12114 (NASA‘CR-122297) AN ADAPTIVE APPROACH TO
‘; THE DYNAMIC ALLOCATION OF BUFFER STORAGE
M.S. Thesis S.C. crooke (Maryland Univ.)
. gnclas 1970 86 p cscL 09B

. 09628 " 6308

ey

An Adaptive Approach to the Dynamic Allocation

of Buffer Storage

by
Sarah Catherine Crooke

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
1970

APPROVAL SHEET

Title of Thesis: An Adaptive Approach to the Dynamic Allocation
of Buffer Storage

Name of Candidate: Sarah C. Crooke
Master of Sc:Lence, 1970

Thesis and Abstract Approved: i?é- - “f/ié é ;’; 7

Dr. Jack Minker <
Associate Professor
Computer Science

. vy - Py . o)
Date Approved: 7 @, o ‘Z’ / V4 / V4

[4

R4

ABSTRACT

Title of Thesis: An Adaptive Approach to the Dynamic Allocation of
Buffer Storage

Sarah C. Crooke, Master of Science, 1970

Thesis directed by: Dr. Jack Minker, Associate Professor

Several strategles for the dynamic allocation of buffer stor_agé
are simulated and compared. The basic algorithms investigated, using
actual statistics observed -in the Univac 1108 EXEC 8 System, include
the buddy method and the first-fit method. Modifications are made to
the basic methods in an effort to improve and to measure allocation
performance. A simulation model of an adaptive strategy 1s developed
which permits interchanging the two different methods, the buddy and
the first-fit methods with some modifications. Using an adaptive
strategy, each method may be employed in the statisticai envirorment in’

which its performance is superior to the othér method.

ACKNOWLEDGMENT

The author would 1iké to éﬁcpress her~siﬁcere sppreciation to Dr.
Jack Minker for his contimuing guidance and helpful criticism through-
out the preparation of this thésis. o

The author also gratéf‘dlly achqowledgés the financial support
glven by the National Aercnautics and Space Administration under Grant
NGR21-002-197 and Contract ¥s&§=39% which providéd funds for the research

performed and for the computer time required. _
' NG R/-002-00F

TABLE OF CONTENTS

Chapter Page
I. SCOPE OF THESIS.:eveceesescscassasascscsannssnse .1
IT. AN OVERVIEW OF COMPUTER SYSTEM EVALUATION APPROACHES... 6
A. - Devélopment of Computer Evaluation Techniques... T

B. System Measurement TOOlS.....ecceceeraceccascnns 11

1. Analytical Modeling.....eeeeessocenseees . 12

2. Simulation...eceeeenveesssescnsans vesaces 12

3. Software Monitoring............ 14

4. Hardware Monitoring......eeeveenceeecnees 16

C. The Use of Multiple MeasurementS...ceceeess cesens 18

D. Specific ApplicationS........ PO ceeee 19

E. Conclusion..... ceeees Ceeeetenenians ceceeees ceaes 21

IIT. ANALYSTIS OF DYNAMIC ALLOCATION STRATEGIES...... cesenene 22
A. Scope of Analysis....; ceesesstsancen 22

1. Function Parameters...... sesssssensesecns 23

2. Pooled Versus Privatev Buffers.cecececeees 24

B. Buffer Allocation Algorithms............ cesens . 25

C. Simulation Language...... Ctecesssesacsetesserann 27

D. Simulation Models Develope€d...ceeeecsceceansensns 29
1. Buffer Allocation (First-Fit)e.eeeeenseas 32
‘2. Buffer Release (First=Fit)...ececececeeaes 34

3. Buffer Allocation (Buddy).eeeececessceses 36

4. Buffer Release (Buddy)........ Crreeenn 38
E. Inputs to the Simulation Models...... Cersentseans - 38
iii

Chapter : ' Page

F. Outputs from the Simulation.....ccceenceececeees 39
G. First-Fit Model Modifications........... R 46
1. Modification 1. Maintain Available .
Buffers DY SiZ€..cceeveceensenss ceerann L6
2. Modification 2. Reduce Control
Overhead.seeeesseeesieseanasansnns een 48
3. Modification 3. Permit Varisble
Request SizZeS.iieeeeriiirninnennss ceen 48
IV. INVESTIGATION OF ADAPTIVE ALIOCATION STRATEGIES....... . 57
A. Comparison of Algorithm Characteristics......... - 58
B. Adaptive Strategies Considered...... 60
C. Adaptive Strategy Simulated........ Ceeeeeteenens 62
D. Results from Simulation of Adaptive Model....... 65

SELECTED BIBLIOGRAPHY . : 76

iv.

Table

ITI-1

ITI-2
ITI-3

' LIST OF TABLES

Page

Comparison of Buddy and First-Fit Allocation _

CharacteriSticSecereesecsarasscsossscsnssscssasnnes 43
Comparison of Simulated Allocation Character'istics; . 4g
Comparison of Allocated Memory for Different

Average Memory Loss per Allocations........ ceesan 56
Results of Simulation Runs Using Request |

Distributions T and Il.eceeceseccccscscscnssanane 68
Results of Simulation Runs Using Request

Distributions IIT and IV.eeececesceecconcacsnanes 69
Queve Formation Produced as Function of Adaptive

Scheme Fmployed..cecececscscecncess ceesssncns ceenaa ‘ 73

Figure

ITT-1

IT1-2

ITT-3

ITT-4

IT1-5

I11-6

LIST OF FIGURES

Distribution of Buffer Requests by SizZ€iieeniecnees

Comparison of Buffer Request Distributions Input
to and Output from the Simulation Model.........

Buffer Pool Memory Map Resulting from Simulation
of Buddy Allocation Scheme...... Cvsessssasssesane

Buffer Pool Memory Map Resulting from Simulation
of First-Fit Allocation Scheme....cceeeen. cessae

Buffer Pool Memory Maps Resulting from Simulation
of First-Fit Allocation Schemes-Model-1 and
M0d81—2 oooooooooooooooooooooo EEEEEEREEEEEXX] R X

Buffer Pool Memory Map Resulting from Simulation
of First-Fit Allocation Scheme Model-3....cec0ees

Buffer Request Distributions I and IT used in
Adaptive Method..eeceeeeecsessooscencanns creenena

Buffer Request Distributions IIT and IV used in
Adaptive Method....ceeeeencenccacaccnnns cresans .

Page
40
43

L4y

b5

52
66

67

CHAPTER I

SCOPE OF THESIS

The subject of this thesis is the dynamic allocation of buffer
storage which is a basic function of computer oOperating systems. The
allocation methods investigated here are the buddy method and the
first-fit method. ‘This thesis presents the results from the simu-
lation of the basic methods, modifications made to the baSic methods,
and the adaptivé use of the modified methods.

The work for this thesis was carried out in essentially three
'phases: a bibliographic search, development of simulation models of
basic algorithms for the dynamic allocation of buffer storage, and
an investigation of the feasibility and possible advantage of em-
ploying an adaptive method for the dynamic allocation of buffer stor-

The first phase involved performing a bibliographic search of
the computer science literature relevant to computer system evalua-
tion techniques. A bibliography on the literature pertinent to the
monitoring and analysis of computer operating systems was accumﬁlated.
A KWIC (Key Word In Context) index25 was prepared for the bibliog-
raphy. Chapter II of this thesis provides an overview of the papers
that appear in the bibliography. The evaluation techniques discussed
ineclude simulation, mathematical modeling, software monitoring, and
hardware monitoring.

In the second phase of the study algorithms sultable for

handling the dynamic allocétion of buffér storage were analyzed. The
analysis technique employed involved the digital similation of models
written in GPSS-IT, a general purpose similation language. The buddy
method, which is implemented in the University of Maryland Univac 1108
EXEC 8 operating systém, was analyzéd. Buffer request distributions
characteristic of the University of Maryland's 1108 EXEC 8 system were
established from mémory, inaps constructed from printouts of the buffer
pool. The buffer réqﬁést distribﬁtions obtained were used as input data
to a simulation model of the buddy method. Validation of the simuilation
process was thén possiblé by comparing the simulation outputs indicating
the intémal and eﬁctefnal fragmentation, the number of searches for
available buf‘fers, and the number of collapses of adjacent buffers with:
thé actual operating system characteristics. |

The first~fit method for handling the dynamic allocation of buffer
storage was then modeled and simulated. This was followed by modifica-
tions to the basic first~fit model which j.rrproxfed the perfonnance of this
method. Using the same request distributions in the simulation of these
models, the results were compared with the outputs from the bﬁddy method.
It was found that the buddy method performance is best in view of the
EXEC 8 operéting system enviromment.

Underlying this result was the assumption that no s_ighificant internal
waste 1is incurred due to the restriction in the buddy method that the
size of all buffers allocated must be a power of two. There is no guar-
antee that the size of the buffer actually utilized by the requestor is
close to but less than some power of two. There is the same probability
that it will be »close to but just greater than a power of two, in which

case approximately one half of the allocated buffer will be unused.

The buddy model was run again undef the assumption that requests were
made for the exact size of buffer needed. It was found that internal
memory waste is a significant factor and may well be unaccep’;able if
the average size of the buffers requested is large. Comparison of the
outputs of the first-fit method with those from the buddy method in-~
dicated that the first-fit method incurred less intermal memory waste
than the buddy method, specifically, whenever the average request size
is greater than four times the average overhead of the first-fit method.
Chapter III presents descriptions of the basic algorithms modeled,
modifications made to the basic models, and the results obtained from
the simulation process. |

From the results found, it is clear that the performance of-a
_ glven allocation scheme is a function of the buffer request distribu—~
tion which is characteristic of the operating environment. It suggests
that Aalter'native strategies may be desirable when the characteristics
of the request distribution changes. The realization of such a strategy
in an éctual operating system requires that altermative methods for
performing a given function be made available in the system and that
internal monitors be available in the operating system ’co_’detect and
indicate the rate and direction of significant change in the operating
environment; and, that a mechanism be provided fbr automatically re-
blacing one strategy by another as ab function of thé en\./iromnental
change. There is no indication in the computer science literature that
such an adaptive strategy has been proposed or attempted in an actual
system. In general, a system becomes fixed at system design time.

The initial problem associated with such a strategy is in making

two independent allocation algorithms compatible. It was found that
modifications to the basic algorithms could be made which did not
seriously degrade the allocation performance and at the same time per-
mitted transition from one to the other automatically without inter—
ruption to system operations. A model of the adaptive method was con-
structed and the performance was determined through the use of digital
simulation. The adaptive model and the outputs from the simulation
process are discussed in Chapter IV.

The significant features and conclusibns of this thesis are
sumarized as follows:

+ Data obtained from an actual operating system are used in con-
Junction with digital simulation to analyze methods for the dynamic
allocation of buffer storage.

+ The allocation methods studied individually included the buddy
ﬁethod as implemented in the Univac 1108 EXEC 8 system and the first-
fit method. ‘

+ Based on the request distribution for buffer storage found in
the University of Maryland Univac 1108 EXEC 8 operating environment,
the performance of the buddy method is better than that of the first-
fit method in terms of allocation times and memory utilization.

+ If the average buffer size requested is large, the internal
memory waste introduced by the power of two buffer size restriction
implicit in the buddy method may be unacceptabie. Internal waste can
be eliminated through the use of the first-fit method to allocate
buffers of the exact size needed. However, some external waste is
introduced due to the fragmentétion of available space.

« An adaptive method is investigated where provision is made for-

&

eithér the use of the buddy method, when speed is important and inter-
‘nal waste is acceptable, or the use of the first-fit method when this
typ‘e of waste becomés a serious problem.

« An adaptive approach was developed, results from a simulation
model of this strétegy were obtained, and based on these results, it
was concluded that if characteristics of the operating environment
change significantly, such an approach should be considered seriously
for implementation.

« It is recommended, based oh the reéults éf this thesis, that
internal monitors be avallable on a selective basis to determine oper-
ating system charaéte'ristics, that alternative algorithms suitable for
handling system functions be studied, and that the adaptive approach
be considered whenever system performance can be improvéd (br main-
tained in unfavorsable environments) through the use of alternative
strategies. Note, selective sys»tem.monitoring should be used only when
the potential improvement in system performance exceeds the overhead

arnd system degradation introduced by the monitoring process.

CHAPTER IT

AN OVERVIEW OF COMPUTER SYS’IEM EVALUATION APPROACHES

The need for evaluation arises initially when the need for a
computer system 1s determined. The need for evaluation is never
satisfied complétely thereafter. The original plans for implementing
a computer facility involve the following basic question: 'What
configuration of hardware, software, and personnel is required to
perform the anticipated data processing tasks and generate useful
outputs within a required’ response time?'. It is clear that many
different system configurations COuldd éatisfy the user réquirements.
The objective then, is to determine which configuration is 'optinié.l' .
The optimal configuration must be considered relative to user
requirements. 'This is the only context in which the term optimal as
applied to computer systems has meaning. The situation is parﬁi—-
cularly difficult because user requirements may change with time.
The system which is finally implemented may not be optimal, but
rather a result of compromises made to best satisfy user requirements.
In order to make meaningful decisions during the system design phase,
standard measures of system capabllities must be employed. This leads
directly to a consideration of the measures to be used in the evalua-
tion of system performance. One is also' led to a consideration of
the techniques to‘be used for analyzing the system and assigning
values to these measures.

The measures used in evalﬁati_ng the system are a function of

user requirements. Some of the measures related to user requ:nremeﬁts :
are turn-around-time, throughput, cost, system rellabllity, and com-
binations of these factors. Assume for the moment that the \user is
able to estimate his applications workload and to specify his
requirements on the system. The problem then beccmes one of adépting
a technique or methodology for evaluating possible system confiéura—
tions in terms of his requirements. A possible configuration here
may be a standard off-the-shelf hardware/software system, or a ,eon—
figuration resulting from some suitable combination of availablg;év_ 5_"
hardware/software components which can be integr'ated to handle the
applications workload, or the design of a new system. Altho_ﬁgﬁ_' 1t is
difficult to evaluate the effect of the persomnel within a system, an
attempt must be made to take into consideration such factors as
personnel experience level and expected competence. The capabll:u.ties
provided for in a system design msy be realized to a large extej:}t or
may be degraded significantly as a result of the personnel 1nter-

acting with the total system.

A. Development of Corﬁputer Evaluation Techniques
A review of the brief existence of general-purpose computer'
) systems may put into perspective the current concern for the need for
system evaluation measures and techniques. As late as 1960, _tlge
problem of system configuration presented no serious selectiorf;prob-
lems. There were‘ few equipments and few manufacturers. If a large
scale processor were required and funds were available, a computer
system could be installed necessitating relatively few decisie%s on

i

the part of the user. The application determined whether a sciientif’ic

or c‘onmercial c':ompnter; i.e. , binary or d'ec:'unal,. was need'ed"
Standard software packages mcludJ_ng O/S compllers R a.nd assemblers '
were furmshed with the hardware Hacv:Lng declded on a. vendor, the
hardware conflguratlons were fairly standard A few optlons could be
exerc:Lsed .8, the number of physmal tape drlves to be :Lnstalled

During the next few years experlence was gained in the use of
the second generation computers. Among computer users , there was
growing concern due to the lack of well—def:‘med evaluation and v
selection techniques. By 1964, the year IBM annomcedjﬂ their third
generation computer, the IBM 360, it is significant that 'one full
session of the AFIPS Spring Joint Computer Conferencei._wa.s. devoted to
computer system .evaludation. The government, the largest customer of
the computer industry was finding it more difficult to _justify s, in
terms of value for cost, the purchase of one system as opposed 'to.
others. The number of vendors, the line of camputers and options,
the number of programming languages, and operating systems had all.
increased. The decisions regarding what computer system to select
had increased accordingly. At this point several approaches were
taken to get a handle on the seemingly unsurmountable-task of com-
puter selection. |

In an effort to standardize computer system selection for a
goverrment project requiring the purchase of 150 computers a method
was proposed whlch involved assigning weights, that is) nmnerlcal
values, to all items in a proposed system. This weighted factors '
selectlon .method1 recognized the need for evaluati_ng ...,' extras' ‘as well
as standard items The inherent weakness of the metﬁpd lay in the use
of absolute weight's to score too many factors and to’iscore detalls -

e

within each factor in different ways. The result was that a given
item',' e(.g.h,' spve»e'd'.,' might bé'.Wéi’ghtéd for many différént vr-eas.ons so
that 1ts true worth and influence in the final seléction could not be
determined accurate]y.r A fﬁrthé'r' objéction to this sélection méthod
was that the declsions undérlying thé 'systém evaluation .were largely
a matter of subjective opinion and wére baséd on thé ‘evaluators!'! past
experience. Evaluators aré biased by their background, e.g.,
financial or engineering, and in the case of new systems, past ex-
perience may not be réliable as a basis for computer selection |
decisions. The value of this method was that it attempted to stand-
ardize the selection of computér systems so that particular vendor
proposals could be treated impartially.

The cost-value selection techn:Lqm-z2 resulted as an outgrowth or
extension of the weighted factors selection method. Only two
categories of factors, costs and extras, were recognized. The costs
included those associated with securing and maintaining the computer
System equipment and thé support necessary to satisfy the applications
requirements. The 'extras', later translated to dollar cost, included
‘items of value which were inherent in the costs of one system but not
to all systems under consideratioh. Ideally, each item, i.le.', each
system attribute 'of value, was oonéidered only once in the evaluation,
either as a direcf cost, an indirect cost via increased running time,
or by its value as an 'extra' . ‘The reduction of all items to a dollar
cost produced a common .denominator which was then used as a measure
for all systems under cons'idératiori.. The basic advantage of this
techr’]iqﬁe over the‘.weightéd' factors téchniqué lay in the common

denaminator concept which allowed all item costs to be treated

10

independently. The co'st—valués‘.dérivéd' for the various ,sys’cemé were
applied as credits to offset the cost of the system and services.
']hé system providing thé' most: valué for cost was thén thé system
selected.

Coviously ,l this method does not solve all thé probléms 'involved
in the selection of a coﬁpﬁter systém. Its primary shortcomings in-
clude its failuré to considér interaction of pérsonnél with system
hardware and software, the system 4design integrity; and validation of
proposed system charactéristics. Furthér, in néithér’ of these "
methods is there any attempt to utilize computers to automate the
compiex procedure of system evaluation and selection.

In view of the number of details involved in hardware and soft-
ware description, it was clear that a library must be established and
updated as new designs bécame available. Furthef, this library would
be effective if it could be referenced automatically. The need for a

3

complete library of EDP information was not new. Auerbach Corpora-
tion very early in 1962 realized the need for standardizéd reports and
information which could be readily accessed by computer users. The
reports and information made available were and are valuasble as a
library resource; however, their role in system evaluation is 1limited
to the extent that manual system evaluation itself is limited.
Perhaps, the first significant technical development is reflect-
ed in the initial efforts to automate system performance evaluatlon.
.This approach includéd’ the use of a tapé library which could be |
accessed automatically in cor'l,j'mct:ion with an a’ctémpt to modél' and

similate the performance of proposed systems. The computer system .

11

developed, SCERT (Systems and Computers Evaluation and Review
' iechniqdé)j,'uﬁ' was Adesivgn-ed tbtassiét in mak:mg initial c’ompﬁtér‘
sél'ection décisions , to aj.d in détérfrﬂrﬂ.ng thé‘ adéqﬁacy of a glven
system, to évalﬁate médii‘ications madé 'to incréasé éystém’ capabili-
ties , and to détén'm‘.né thé' éffects of aﬁtomating néw applications and
software. » Thé' dévelopmént of this évalﬁation technique was well under
way by 1964 and was reported at that time.

Since 1964, the original version of SCERT has undergone modifi-
- cations and has been enla_rgéd to permit e\}aluation of large compléx
 systems as well as small special purpose configurations. More
recently, CASE30, a sixmilétor comparable to SCERT has been developed
by Software Products Corporation. Of some interést is the fact that
both SCERT and CASE are majntainéd by the developers on a proprietary
basis. Of more importance is the fact that the value of simulation
in computer system performance evaluation is being recognized and

that simulation techniques are being utilized.

B. System Measurement Tools

At the present time, the methods for vcomputer’system evaluation
are still somewhere between an art and a science.6 The scientific
method involving observation, hypothesis, experimentation ,v and modifi~
cation is difficult to apply to computer systems. This may be true
bécause it is not possible to conduct controlled eiperiments. on a
camplex and variabie _vsystem or hecause to modify the physical systém
to perform experiments would be too costly and would require
excessive time and effort. The problem of system evaluation has been

attacked on several levels - analytical modeling, simulation, internal

12

software monitoring, and hardware monitoring. The applicability of
any one of thé'sé:técfmiqu-es'may‘b-e' limited and the confidence to be
placed in thé final évalﬁation is a f‘ﬁnction of thé' lévél of ﬁndéré-
standifxg of the user.

1. Analytical Modeling. As evidenced in the recent literature,

much work has been pé'rformed in the area of analytical or mathémati—
cal modeling. It is.significant that the scope of the modeling
studies has been limited to subsystems of the total system.' Attenpts
to describe a total system mathematically r‘éSUlt in complex unsolvable
models or evén if solvable, the models are not sufficiently f‘lexible
to permit modification and further analysis. Although the usé 6f‘
mathematical analysis has been restricted to logical subsystems of the
total system, the results produced in many instances are directly
applicable in making decisions during system design and later in for-
muilating algorithms for system operational control.

Typical studies in mathematical modeling involve the analysis of

7

I/0 buffering requirements , paging characteristics8, the phenomenon
of thrashing associated with excessive p.ag:mgg » time-slicing algori-
thmé for multiprfogr'anminglo, queueing disciplines as applied to job
schedulingll, and dynamic allocation of system resourceslz. The
models provide a means of thoroughly understanding specific critical
aspects of a camputer system.' As indicated earlier, mathematical
modeling is not a practical solution to the problem of total systém
evaluation. TIts applicability should be viewed as local as opposéd to
' global.“

2. ‘Sinmlation. A partial attack on the global problém" is through

similation. 'Ihé' phrase 'partial attack' is used be'caﬁsé' toméké thé

13

most effecti\-re ﬁsé- of similation',' 1t should be used n conjunction
with other technlques such as analytical models s software monitoring,
and even hardwere monitorlng A smmlation model properly designed
and implemented for a sn.zable system is expensive, but may be one of
the best tools for accurately predicting and analyzing sys‘cem perfor*—
mance. The proper use of simulation is not easy. If the 1eve1 of ‘
simulation 1s too gross, not enough details are sirmilated and the re-
sulting information content is low. If the level of simulation is
too fine s the cost of performing the simulation due to run time may
be prohibitive. Further, the results produced through simulation are
no better than the assumptions underlying the constmction of the
model. The assumptions concerning the behavior of variables within
the real systerﬂ are perhaps most critical. In many cases the.be—
havior of these variables can be represented only through random
sampling of variables assuming a particular distribution. The results
are then valid to the extent that the assumed behavior of the varia-
bles in the simulation approach the actual behavior of the variables
in the system simulated.

To facilitate the expression of the components and logic of can
plex systems, special purpose simulation languages have been develop-
ed. The primary objective of such special purpose languages is to
permit the user to concentrate more on the details of the system simu-
lated than on the mechanics of the language in which the system is -
expressed. This is not to say that much simulation work has not been
done in the past using availa.bie_ general purpose compilers such as
FORTRAN, AIGOL,- and PL/1. There is an_advantage in using general pur—

pose la_ngti_ages’ since commmication of programs is _facilitated due to

14

widespread use' of tmse"langdaées.;. A dlsadvantage of the use of these
languages is that in order to s:mulate t:.m:.ng, inter'r'upts, queues, and
control functions accurately, more 'attention must be‘ g;iven' to details
of using the language than to details relevant to the simulation. The
nature of the similation la_ngdages developed' varies from general pur-

pose’ System sirm.llators,'e.g., GPSS13 and SD’BCRIPTM, to computer -

system simulators, e.g. R CSS15 and '8316, to hardware SjJnulators, e.g.,

Computer Des:.gn Language and HARGOL18. Further, some of the
languages were developed as 1ndependent assenbly based languages and
same as extensions of existi_ng languages.

In deciding what language to use, certaln factors may be
critical - availability of the language for general use; l.e., pro-
pfietary or unrestricted, fleﬁbiﬁty of the language, and prior ex-—
perience with the use of the language. The simulation language, to a
large extent, determines the scope of the simulation possible.
Objectively, the language should be selected or developed to provide
‘ease in representing the system te be simulated, to permit either ‘
general or detailed descriptions of system components as a ﬁmction
of the level of simulation required, and to make pessible the use of
mathematical models for characterizing alternative modes of system
behavior. The outputs from a simulation study are equally important,
i.e. , the measures of system perf'ormance produced by the simulation
which provide statistics relating to turn-around-time, throughput,
hardware/'software utilization and.qdedeing processes.' To be usef’ul,-
the outpﬁts should be' a function of user need' for detailed or gene'ral
infoxmatlon at any desired f'requency throughout the s:.mulatlon run.

3 Software 'Monitoring Inter'nal sof'tware monitoring of an

15

actual COmpnter' system is. anotne.r'.means of attack:ing the problem of .
assessing system effectiveness. ' ystem' ana]ysis;"nsing this .techniqne
has been undertaken at the Univers:Lty of Mich1gan19 and is also being
used to monitor the MULTICS time—shari_ng system at M.I.T.2O. Clearly,
this techniqne is usef’ul only in conjnnction with an operational
system. The monitoring disctlssed here is not necessarily comnected
with the collection of accounting type information. The function of
the monitor is to gather statistics on actual system resource utiliza-
tion, queue formation, job frequency, etc; The outputs then form the
basis for identifying excessive queues if they exist, which in turn
reflect bottlenecks in the system and need for improvement. The
rrionitoring mechanism must appear to be operating in parallel with the
normal operating system, causing essentially no interference which
would alter the results of the standard mode of 'operation. Particular
care must be taken in using this technique in that' the monitoring is
not actually performed in parallel, and the user must be assured that
the interference, if any, is insignificant with respect to the para-
meters oi‘ interest.

Iimited use has been made of this technique since the implemen-
tation of the monitoring mechanism is special purpose. Each computer
installation invariably has its own unique operating system which
means each new system monitored requires new routines and reprogramm-
ing to permit evaluation of system performance. Further, comparison
of systems monitored may be difficult due to differences in system con--
| figuration and general operating procedures . It is my contention that
each operatlng system must build in a monltoring capability of its. own.

. This is true for any 1arge system. °

16

Very recent efforts in the area of software monitoring include

028 29 and a. software '

the development of monitors by Boole and Babbage
measurement technique, SIPE (_S_ystem Internal Performance Evaluation)
developed' by IBIVI2 6'.‘ Both of these monitoring devices have been de—
s_igned for the TBM system/360 Time Sharing System. The use of either
‘of these monitors results in some sy_stem degradation during the data
collection and récording mode. The loss of system efficiency incurred
is justified in that analysis of the operation of a large-scale com~
plex operating system requires data that can be cbtained only fram
'inside' the system as it is operating. The basic feature of internal
monitors is that they have access to, and can selectively record,
system data. Subsequent analysis of the data recorded allows for
locating the low efficiency portions (i.e., bottlenecks) of a con-
figuration and permits determination and improvement of inefficlent
software.

Although the actua.l' implementation of an intermal monitoring de-
vice is special purpose, the results obtainable fulfill very general
needs. Every operating system should have the capability of self-
monitoring, particularly in areas where performance evaluation 1is
critical and in cases where the workload characteristics and system
utilization may vary over time. A logical extension to the self-
monitoring concept 1s system self-modification, i.e., under certain
conditions adjusting parameters within the sy-steIh which govern system
performance. Clearly, this step can not be taken until performance
under manual 'control of paraxneter modification can be evaluated and
understood fully |

’-l " Hapdware 'Monitoring The design and’ inplementation of

17

special hardware monitomng devices has been]_'Lmited due to cost of
mplementation primarily 'Ihe need for. such devices has been realized'
as experien'ce has been' gajned' in the' use of large nmltiproce'ssi_ng and
multiprogramming systems.- In most cases; the system capabilities are -
unknown and means must be devised to determine the system operating
characteristics such as T/0 wait times, overlap of activities,
resource utilization and idle or unproductive tJ’Jnes. Hardware
monitoring is especiallv attr'active Since, if properly des{ig;ned, many
signals can be monitored simultaneously, causing essentially no inter-
ference with the 'system monitored.

One of the earliest uses of hardware monitoring was the direct
couple system mpléméntéd by IBM which permitted an IBM 704k to
monitor the IBM 7094 operating in stand alone fashion®t. The 70U
acted as a bilg counter to obtain sta’cistics on instructlons processed
in the 7094. This technique is currently being used by Univac to de-
bug and evaluate the 1108 EXEC VIII operating system’!. In this case,
two 1108's are set up as a multiprocessing system, however, the only
. function of one processor is to gather information cn the operations
of the other processor. The cost of such monitoring precludes their
general use by individual users attempting to improve system perfor- ‘
mance. |

Tn 1967, the design of the SNUPER computer was reported-c. The
objective of theldesign project was to develop a Irlonitoring.device'
which'Wodld interface with a compdter' system, produce a record of
significant events, and be’cween significant events, provide for
generation and maintenance of on—line displays. 'I‘he ultimate. goal _of'

this study was to determine the' class of instrwnenta’cion which could

18

; givé significant measuresof s_ystém‘ pérfomancé using a small, low
cost SNUPER camputer. If these chjectives could be met,: the camputer
then could be used at more than one computer installation. The most
recent report on this project was given at the AFIPS 1969 SJCCZ3. The
emphasis in this répor't was moré on thé' class of parameters which -
could be monitored than on the hardware features required to handle
the monitoring.

At thé' same tlme, IBM was working on a recording device, the
Time-Sharing Systém Perfor'mancé Activity Recorder ('I‘S/SPAR) to be used
in monitoring the class of TSS/360 computers2u. Input to this device
was via a specially engineered interface through which the internal
states of the Model 67 system and I/0 devices could be monitored. The
report was non-cammittal as to the actual success realized through the
use of the recorder. It was viewed more in terms of its potential for
the future in the areas of multiprocessing, multi—tasking, data set
organization in virtual énd real storage, and I/0 monitoring. A long
rahge objective was to provide feedback: capabilities and make the
recorder a system monitor rather than merely a logger of information.

At the present time, any extensive hardware monitorihg is
special purpose, expensive and rather inflexible. As a conSequence s
hardware monitoring devices, developed and used, by computer system

designers, have had]imitéd use by the general user.

C. The Use of Multiple Measurements
In the précéding discussion, thé maJor methods available for use
in systém’ evaluation havé included mathematical modéling » simulation,

internal software monitoring and hardwaré_ monitoring. Each of these

19

méthods has its. adyant_agés' and éiéb',its Iimitations. In the evalua-
fién of Systém‘.pérfonnéhcé' fof a large scalér’miltiprocé's'siﬁgor
mlfiprogrmné s‘yétém;' any 6né technlque may not be a practical or
satisfactory solﬁtion“.A Iﬂ.mitmg factors may includé cost, complexity
of syst'em‘,» lévél‘ of confidéncé in ﬁnavbidablé assumptions made, in—
flexibility, or interference caused by the monitoring device. A more
practical solution to systém évalﬁation appears to be through the use‘

of moré than oné téclmiqﬁé.

D. Spécific Applications

Perhaps thé best ékanple of the use of multiple measurement
tools is found in the research now béing conducted on the MULTICS
. time—shari_ng system20. At system design time, certain hardware
features were provided to enhance software measurement. These in-
cluded a central read-only system clock which produces a count per
ﬁsec , & time match interrupt, and a CPU memory cyqle counter. When
the system became operational, software modules were developed to use
the hardware monitor features and to pr"ovide information on frequency
and timing of missing page faults, missing segment faults, linkage
faults, wall-crossing faults, and interrupts. By taking advantage of
the built~in hardware features_, the software required was not elabor-
ate. For éxample R s.egmen"c usage metering was performed through the
use of the clock and the time Hthhjng interrupt. Every 10 ysec an
interrupt occurréd, at which time the core locaticn was noted and re-
corded. Reduction of the data providéd a histogram of segment ﬁs,ag-e :
and indicatéd most popular s_égménts.-' The résﬁlts permit localizing

where time was béing spént and further which procedurés should be made

- 20

more effici-'ent.-i

In order' to condoct '.scientifio type experlments, :Le, repr'o-
duciblé experiments as far as possible, bench marks were established
for the MULTICS system. The bench marks took the form of seript in-
pﬁt which is essentially an estab]ished list of cammands representing
console ﬁser’s.r Dur'ing test periods, the system configuration is
standardized and the use of the systém is restricted, i.e., no other
users are allowed to distort the eﬁcperiJnent. One of two modes of
operation then is possible ~ internal or external. In the intermal
mode, the script is read into the main computer. A simulation program
s used to inter'pret the conmands and to trigger the system functions
just as if n consoles were driving the system. When the external
mode 1s used, the script is interpreted by a PDP-8 computer and inter-
rupts are produced at the main computer exactly as they would appear
if produced directly from console users. A logical consequence of
using bench marks for system evaluation is that optimization of system
performance is in terms of the inputs used. The MULTICS project group
considered this in setting up the script. The commands to the system
included in the 'script were selected prilﬁar'ily from typical requests
requiring extensive file maintenance and management. Optimization of
the system in terms of these requests results in general system
improvement since in a time.—.sharihg system much time 1s spent in pag- -
ing and file manlpulat:l.on.

In summary, measurement tools belng used in the MULTICS system
':anlude hardware monitom_ng (prov:Lded in system des:Lgn) software
monitoring, bench marks, and sjlmlation. Evaluation of the data

obtained through the use of these measurement tools is providing

21

insight’ into. the operation of time-sharing systems and making system
izrprovénént possiblé' throﬁgh thé"analysis of éfféctS"prodﬁcéd.‘_by‘_ :

system modification.

_ E Conclﬁsion

Not all systém anélysts aré f‘ortfmaté eno_ﬁgh to have integrated
hazdwaré instmnéntation; howévér,- éﬁtensive use of all available
evaluation téchniqiies should bé consideréd. One attractivé approach
is through simulation, validated by actual system performance as -
determined using internal software monitoring. Further, the simu-
lation process may be reduced through the use of results derived from
mathematical modeling of subsystem behavier. The technique or com-
bination of techmniques to be select.éd and implemented for any given
system will depend upon many factors including available hardware
instrumentation, the scope of the evaluation, and the stage of system
development. In any case, system evaluation must be a continuing
effort - in the system design in order to meet user requirements and
later in system operation to determine whether system capabilities
have been exceeded, or the system is being uséd inefficiently, or
sinply to improve or to maintain system performance as user and appli-

cation characteristics change with time..

CHAPTER ITII
ANALYSIS OF DYNAMIC ALLOCATION STRATEGIES

A. Scope of Analysis

The analysis undertaken makes use of simulation models and
internal software monitoring of actual system performance. The
scope of‘ the simulation was restricted to analyzing the characteris-
tics of dynamic allocation of buffer storage for temporary,
unpredictable, and small storage reciuests. The Univac 1108 super-
visory system, EXEC 8, allocation scheme was the subject of analysis.
This system was selected because of its availability at the University
of Maryland Computer Science Center for cbservation through software
monitoring. The dynamic allocation schemes for buffer storage
became the subject of analysis because this function is central to
the allocation scheme implemented in the executive system and is a
critical factor in system performance. From time to time the alloca-
tion scheme implemented in the EXEC 8 has come under close scrutiny
of the system anélysts. At these times attention has been directed
more toward determining why system performance has become degraded or
nonexistent than toward evaluating the merits of the implemented al-
location scheme as compared with others which might be more effective
under certain operating conditions. |

It should be noted that the cholce of buffer allocation schemes
as the subject of study was made in view of the fact that the alloca-

tion of small buffers is relatively self-contained as compared with

22

23

dynamic ‘allocation of nser' pr_egr'amsin a multiprog;r'azmning environment.
In generel',. allocetion of nbmor'y- to user programs cannot be consider-
ed independent of a particular system design philosophy including
schedn]ing procednres, priority' schemeS, and hardware restrictions.._
Further; allocation of memory to user programs may be extremely com-
plex involving many variables and parameters which in themselves are
not clearly nnderstood. The interaction of these parameters is then
another order of analysis. The unavoldable complexity and the magni-
tude of sdch a study dictate that experience should be gained in the
use of the' analysis techniques in understanding the basic elements of
a system as a first step. The potential use of these techniques can
then be realized in more extensive studies which should be undertaken.

1. Func‘rion Parameters In the a.llocatlon of buffer storage,

two factors, tJ.me and space, are important. In any glven system one
may be more critical than the other. If such is the case, time-space
tradeoffs may be unavoidable. Ideally, the strategles implemented
would be selected only after an analysis of potential schemes had
been performed, which would indicate the strategy incurring the least
penalty and best satisfying the critical space or time requirement.
The two factors of interest in the dynamic allocetion of buffer stor-
age may be r*es’cated.as the 'time to allocate and release buffers' and
memory utilization or 'the percent of total reserved memory which is
effectively used'.

'Ihe allocation tn.me may be increased or decreased dependlng upon
the alloca‘clon strategy adopted a.nd the sophistication and complexity
mvolved in the programing. The program complemty and possmly the '

running time may be :anreased if a prem:Lum is set on the memor'y use.

24

In any case, there ié always some overhea_df-t:'l'i'n'ef"a's_sgciated with the
search and maintenance of available buf'ferr storage lists. Contributing
to memory loss are system overhead requirements and waste, so that the
memory utilization factor is always less than 100%. Included in the
system overhead is Ehe amount of storage required for linkage, block
sizes, and use tags. Contribﬁ’cing to the waste are two sources of un—
usable memory: external fragmentation of memory and internal fragmen-
tation caused by fixed request size which requires that’the request be
equal to some specified buffer size. Whenever it is necessary to re-
quest a buffer greater than the buffer actually needed, some internal
waste is incurred. The memory loss incurred by fixed request require-
ments may be acceptable and eiren desirable if space is not the prime
consideration and the implementation is facilitated and/or the alloca-
tioh time is reduced. |

2. Pooled versus Private Buffers. Buffer storage allocation is

a function common to most operating system executive routines. There
are two ways to assign buffers: either buffers are acquired dynami-
cally as needed from a pooled buffer, or each process requiring storage
has its .own private buffer which is sufficiently large to make the
probability of overflow less than some number. The use of pooled
buffers by an executive routine servicing many users through reentrant
routines which require temporary buffers is esséntial if memory utili- '
zation is to be hlgh This is clear since otherwise for each routine
the memory loss caused by each user is equal to the differ'ence between
the expected maximum buffer needed and the average buffer usage. A

conclusion based on analysis repoi"ted by Denning31

is that 'pooled
buffers are far superior to private buffers, especially when the Tum-

ber of users is large'.

25

Another advantage of the pooled buffer lies in the fact that
allocation of additional space for buffers regardless of which routines
are temporarily active need bé made only when the total memory allocat-
ed to the pool is near depletion. The ‘term ‘near depletion' describes
the situation where a request is made for a buffer of size n and this
request camnnot be honored, however, the difference between the total
memory reserved and the total memory allocated is greater than n. Re-
stated, this means that if the used buffers were placed contiguously
in the memory pool, n consecutive memory locations would be available
to satisfy the buffer request. It is highly improbable that all avail-
able space will be used before apparentvbverflow occurs due to some
degree of external fragmentation introduced in the allocation process.
It is in the interest of maximnum memory usage to implement an alloca-
tion scheme which keeps external frfag;nentation at a minimm or to pr;)—
vide for memory consolidation periodicalliy. Because of the asynchronous
nature of the executive functions and the many users operating con-—
currently in the camputer system, buffer consolidation through memory
rearrangement énd relinkage would be unfeasible. - The objective then
is to evaluate allocation schemes in relation to phe operating envifon—
ment and decide upon one which keeps external memory loss within
acceptable limits.

B. Buffer Allocation Algorithms -
Basic schemes for dynamic allocation along with algorithms for
implementation have been well defined in the computer science litera-
ture32. Some comparisons of the methods have been made on the basis

of assumed operating environments. The schemes receiving most -

26

widespread usage are’ the Pirst~fit method the best—flt method, and
the buddy method In the Flrst<fit and best—xfit allocatlon , a st .
of avallable storage is malntalned. When buffers are released, they
are returned to the list of available storage either separately or
canbined if the released block is contiguous with a block of available
storage.' The difference in the two methods is found in the allocation.
In the first-fit method, a request for a buffer of size n is filled
from the first block of available storage encountered on the list
which is greater than or equal to n. In the best-fit method, if rlo.
block of size n eiists s a search of the entire available storage list
is made to find the block of storage which makes the availabie stor_age.
block minus n a minimm. In general, the best-fit method is implement-
ed less often' than the first-fit method because of the time factor in-
volved in the available storage 1list search for each allocation made.
It has further been feund that the best-fit method does not necessarily
reduce the problem of frag;nentation32.

" The buddy system which is implemented in the EXEC 8 requires that
the size of requested buffers be a power of two. It should be noted
here that this requirement for standard request sizes may be an impor-
tant factor in memory loss if the user must request buffers which are
larger than actually needed. If no buffer of size K 1g available,
the smallest block 2J wnicn is greater than X is split into blocks of
2k.',A..I.,-2‘jf'1. words each.” Upon release of a buffer, halved blocks,
called buddies, are recorbined if both are availahle. More camplete
descriptions of the flvsteflt and buddy algorithms will be glven later
since these are the two basic schemes, with some modifications, which

are evaluated.

27

As indicatéd' éarliérj,' thé' énalysis techniques ﬁsed included.
simulation and some software monitoring of the EXEC 8 operating
syst'em-'.' ']lh.é similation pérmittéd an V-evalﬁation of the allocation
schemes in terms of time and memory utilization. The data obtained
ﬁsing intérnal sof’cwaré monitoring of the executive system provided
réQﬁést—réiéase distribﬁtions representative of those seen by an
actual opérating systém. Similation taken alone is valid to the ex-
tént that thé assumptions made about the actual behavior of the system
parameters are valid. Software monitoring provides data representa-
tivé only of the particular system monitored since, incorporating
alternativé schemes into an eﬁsting operating system for experimen—
tation ptjr'poses- is difﬁcﬂt, and in general, is not encouraged by |
system analysts responsible for maintaining an 'operating' system.
Validation of the simulation models and increased confidence in the
outputs from the evaluat_ion process resulted through the combined use

of the two techniques.

C. Simulation Language

The schemes for dynamic allocation of buffer storage were modeled
using GPSS-IT and processed using the Univac 1108 at the University
of Maryland Computer Science Center. GPSS~II is a general purpose
system simulator designed to permit the study of any system or process
which can be reduced to a series of operations performed on units of
traffic. The structure of the system simulated 1s described as a
series of blocks, each block describing scmé step in fhe' action of thé
system: A nmrbér of block types aré provided, each corresponding to |

samé basic actions or conditions that may occur in a system. In the

28

 simulation proc'essj,. units of 'traffic;" or tr'ansactions; ‘are created
and processed through the system by the similator.

The User of GPSS~IT may control the volume of traffic, the
action timé in any block.,' transaction f)riorities, conditional entry
or exit from blocks ,- and specify the outputs desired. The outputs
may 1nclﬁdé information on the nﬁmber of transactions, i.e., volume of
traffic through portions of the system, the distributions of transit
timés for transactions between selected points in the system, the
averagé ﬁtilization of system elements such as facilities and storage,
and Information on queue formation at selected points in the system.
The outs‘canding féatures of the simulator include the facility with
which continuous or discrete functions may be defined and used in the
simulation process, the control the user has over the routing of
transactions through the system, and the ease with which statistical
data may be collected at critical points in the system.

The models developed to represent the dynanlic allocation of
bﬁffer storage assumed the following correspondence between system
components and the elements of the block diagram. ' Requests for buffer
storage are treated as transactions, and the size of the buffer pool
corresponds to storage capacity. The arrival of requests for buffer
storage were generated. assuming a Poisson distribution.v The
requests are serviced according to the allocation scheme modeled.

‘One of the more difficult aspects of the modeling_ involved cone
trolling thé' locations in memory which Wére allocated for a given
tra.nsaction'." The GPSS-IT langu_agé provides for defini.ng' storfagé
capacity; and thé' SJ’Jmilator rétains a record of used and ﬁnﬁsed' stor-

agé,'bﬁt doés' not récord which spécific transactions occupy the

storage. In order to realistically simulate the allocation process
and determine the extent and type of memory fragmentation charactéris—
tic of each allocation scheme used, i1t was necessary to maintain a
memory map in the models. Total buffer pool overflow was then deter-
mined as a function of whether n consecutive locations were available
regardless of the total number of unused memory locations. In the buddy
allocation model, the memory map of buffer storage was maintained
using GPSS block types under the assumption that the available stor-
age list would remain short, whereas in the first-fit model, the
memory map was maintained using a Fortran subroutine which is per-
mitted as a special GPSS block type. The provision for such routines
is to permit the user to perfor*m certain arithmetic and special
operations in Fortran which cannot be performed conveniently by a

cambination of ordinary GPSS block types.

D. Similation Models Developed N -

The dynamlc allocation of buffer storage is an essential function
in an executive program. In order to perform many utility functions
within the system, e.g., input-output, and to maintain control §ver
system operations, information must be maintained which reflects the
current state of the system operations. Because of their frequent and
asynchronous use, many system routines are coded to be reentrant.
This, in turn, may requiré that each time a reentrant routine is
executed, ei buffer must bé established to identify the source of the
caller and to preserve any parameters modified by a call to the routine.
In general, the size of buffers needed for maintaining system control

are small, i.e., on the order of 22 'co‘28 words and the use time of a

30

buffer is relatively short. These two factors, size of buffers and
use duration are important in évaluating alternative allocation
schemes.

- In the dynamic allocation of buffer storage, a method must be
addpted for allocating and releasing variable size blocks of memory, ‘-
maintaining a list of available or unused blocks, and extending the
buffer pool when it nears depletion. In developing or selecting a
suitable allocation scheme, decisions are necessarily made; either
explicitly or implicitly, with reépect to factors which could affect
the efficiency of the allocation process. In adopting an algorithm,
one, at the same time, adopts decisions such as whether to maintain
one 1list of all available blocks or to maintain several lists;
whether the blocks on the list should be ordered or unordered, and if
ordered, whether they should be in increasing or decreasing order of
size, or in order of mémory address; and, whether requests for buffers
must be a fixed size, oné of several specified siies, or a variable
sizé. The execution time per allocation, the allocatlon routine com-
plexity, and the amount of unusable space per allocated block are
ultimately a function of the allocation process implemented. Through
the use of simulation modeis, algorithms which are based on alternative
approaches can be evaluated in terms of exeeution time and memory
space tradeoffs. Initially, two basic allocation schemes were model-
ed, the fir_'st—-fit and the buddy allocation method.

| In the first-fit method, one list, essentially unordered, by size_,
of available sAtor'_age blocks is maintained; the buffer request size is
variable; the list is doubly linked so that, upon release of a. buffer,

adjacent available buffers in elither the forward or backward .

31

direction may be cambined with the buffer being released; and two
words in.évéry allocatédib100k aré.résérVédlfor allocatign controi.'
Eadh'timé a bﬁffér'of Sizé n is réqﬁéstéd; thé"roﬁtiné is éntéréd;
The 1ist of avallable storage blocks is searched until the First block
of at 1éast'n+2‘words is found. Thé'block from which the allocation
is nadé'is rédﬁcéd by nt2 and the'rémainder, if greater than zero, is
returned to the 1ist of available storage. The address of the reserv-
‘ed buffer is then returned to the user.

Thé othér basic algorithm selected for study is the buddy
method. Ihé'bﬁddy allocation scheme makes use of (m—1) locations
which serve réspectively as heads of the lists of available storage
of sizes 4, 8,...,?m. Circuiar lists, singly linked, are used for
storing available blocks of storage. Before any storage has been
allocated, list pointers are established so that AVAIL(1)=i, i=2,..;,
m-1 indicating these lists are initially empty and AVATIL(m) points to
the location of the first available block of sizé 2™, One word of '
overhead in each allocated block is used for allocation control.
Implicit in the list definition is the fact that the maximum request
size is 2™-1 and the minimm request size is theorétically 1, although
in the EXEC 8 implementation of the buddy method, the minimum is
arbitrarily set at 3. Regardless of the exact buffer size requested,
if 1t is between 1 and 21, a buffer of size 2X is allocated, where k
1s thé‘leaSt‘powerfof 2 which is greater than the buffer size.request—
ed. It should be noted that altholgh a request may be made for any
size buffer within the specified range, the size of buffer allocated
is aiways a powér of two; rép?ésenting éssentially a restrictéd numbér’

of distinct bﬁffér'réqﬁést‘sizes;' As a consequence,‘thé‘lists of

32

_avallable storage are malntained by size. The basic réquest and re~
lease algorlthms for the flrst«fit allocation schemes are taken fram

Knuth's The Art of Computer Progr'ammmg, Volume I entltled thdamen—

tal Algjritlf'nns32. Certain modifications were made to the algorithms

as given, in order to faci]itate the' jlrrple;rlentation and reduce the
similation running time. For example, in the first-fit algorithm,
the packing of the size ,.’ use tag, and link into one computer word was
not actually performed in the leation model. This reduces the num—
ber of operations to be performed in the simulation process which in
turn r'educes the simulation rumning time. As a result, two additional
words in each allocated block are used for simulation control. Be-
cause it is a simulation, and no practical use is being'made of the}
n-2 words in an allocated block, this modification does not logically
change tne basic algorithm. The only consequence of this change is
that for the simulation model of this algorithm to function properly,
the minimm buffer request must be two words, which is not an un- |
reascnable restriction in view of 'tne EXEC 8 requirement whioh may be
viewed as typical of operating systems. The minimm buffer request
size, plus the standard two words required for linkage and control
_guarantees that the four words of control used in the simulation are
available. Minor changes, such as the reversal of the plus and minus
boundary or use tags are a matter of programmer preference and in no
way impose any additional reStr-ictions on the allocation process.:

The simulation models of the first-fit allocation and release
algorithms are as follows‘-‘

1. Buffer Allocation'(Flrst—Flt) _ Let U point to the first

~ available block of storage, and suppose that each available block with

4

.33

 address P contains the followiﬁé information: SIZE(P) ,. the nurber of
words 1in the block maintained in the second and last word of eéach
block; LINK(P), a polnter to the next available block on the list;
LINKB(P), a pointér to the précéding availablé block on the list; and
TAG(P), a sign on the size word which is ﬁséd to control the release
 process. TAG(P) = '+! indicatés a f'ree block; TAG(P) = '-' indicates
that the block is reserved. A 'roving' pointer, ROVER, is used so
that the search for an available block b_égins in different parts of
the available 1list, which avoids initiating the seafch with the first
available block on the 1list for each buffér réquest. F is used in
conjunction with ROVER to determine when all entries on the available |
list have been searched. Upon entry to the routine, F is set to zero.
When ﬁ, the head of the list, is encountered, F is set to 1. If F=1
and the head of the 1list is encountered again, this means that the en-
tire list has been searched without finding an available block of ade-~
quate size. Since ROVEP; may be positioned to any block in the list
initially, some portions of the list may be searched twice. Note that
if the search always begins at -‘the first available block on the list
at each request, there is a strong tendency for blocks of small sigze
to build up at the front of the list, so that in general it may be
necessary to search thfougb many entries in the list before finding a
block which will satisfy a buffer request.
Al: [First entry only, initialize.] Set U, P, and FOVER = address of
first cell of buffer pool. Store size of buffer pool in the second
and 1ast word of hlock. Set LINKB(P)=0 and LINK(P)=Loc(U) .
A2: [Initialize search.] Set P=ROVER, F=0.. -
A3+ TTest end of search.] If P=Loc(U) and F¥0, no allocation is

34

possnble Otherwise Af P—Loc(U), set’ F=l P-U

. ISearch 1ist.] If SIZE(P)2N, go to AS5; otheririse set P—LJI\IK(P)
and go to A3 .'
A5: [Reserve N locations starting at L.] Set K=SIZE(P)-N. If K=0,
set’ LINK(LINKB(P))=ROVER, set LINKB(ROVER)=LINKB(P). (This removes
an empty block from the‘ available 1list and sets L to the beginning of
reserved block.) If K#0, set SIZE(P)=K. In elther case , set TAG(P)=
'-!' to indicate it is reser'ved and set L=P+K.
The algorithm terminates successfﬁlly, having reserved N locatlons
beginning at P+K. The function of the allocation algorithm for the
simulation process is to reserve buffers as requested and to insure
that each block in the buffer pool has the form given in Diagram 3-1.
Note here that since th_i's allocation scheme 1s being used in a simu~-
lation process only; 'no attempt is made to reduce memory ofrerhead,
e.g., LINK, TAG, and SIZE will fit conveniently into one computer
word if time 1s taken 1n the simulation to pack them. In general,
then, two words of control are sufficient to maintain control of this
data structure. When buffers are returmed to the buffer pool, the
release algeritm assumes that the blocks are in the form maintained
by the allocation process.

2. 'Buffér Release (First-Fit). This algorithm puts a block of

N locations 'starting at address L onto the availahle list. Whenever
 an upper adjacent block of locations 1s found to be available, it is
deleted fram the available 1ist and collapsed into the Block currently
belng released. If a lower adjacent block is found to be availshle,
the block belng released is cqmb:med with the block alr'eady on the '

Jis’c'. Ir ne:Lther adjacent block is free s the block currently being

TAG='~'

TAG="'-".

TAG="+!

TAG="+!

- 35

RésérVéd' Bﬁffér‘ Format -

......... - UNUSED
TAG - SIZE
_ UNUSED
¢ < SIZE - 4 Words -
G| | s1zE .

Free Buffer Format

o CLINK | : - Pointer to next available
: : buffer on list
TAG } o4 SIZE :
S .. LINKB| . - Pointer to preceding available

buffer on list

SIZE - 4 Vords

Diagram 3-1. Buffer Formats
Used in the First-Fit Simulation Model.

-

36

released is simply added to. the front of the available list..

Rl: [Check upper adjacent block.] Set P=IAN.. If TAG(P)';Q','_ go to R3.
R2. [Check lower adjacent block.] If TAG(L-1)>0, go to Ri. Other-
wise, set P1=U, P2=Loc(U), and go to R5.- | _
R3: [Set up for deletion of ﬁpper' adjacént block.] Set N=N+SIZE(P) R
PI=LINK(P), P2=LINKB(P), if P=FOVER, set ROVER=Loc(U). B
If TG (I~1)<0, go to F5, otherwise, set LINK(P2)=P1 and LINKB(P1)=P2.
R4: [Collapse current block with lower ad,jacént block.] Set N=N+
SIZE(I~1), set L=I~SIZE(I~1), and go to R6. |

R5: [Ré]jnk.available list.] Set L]NK(L)=P1, LINKB(L)=P2, LINKB(P1)
=I,, LINK(P2)=L.

R6: [Store size. of block returned.] Set SIZE(L)=N, SIZE(L+N—1)=N,
and return. |

3. Buffer Allocation (Buddy). The buddy similation model

devéloped is based on the allocation and release algorithms presented
in Knuth32. This method requires one word for control in each block
and requires that the size of all blocks be a power of 2. This me_théd
kéeps separate lists of avallable blocks of each size 2k where 25ksm,
and 2" is the largest permissible buffer size. When a buffer of Zk
words is requested, and no block of this size is available, then a
larger block is split into two equal parts; at some point a block of
the requested size 1s .availahle.b' Whén one block is split into two
equal blocks, these two blocks are called 'buddies'. If at a later
time, both.buddies are .available;' they may be collapséd into a single
block.

The usefulness and practicality of this method lies in the fact

that 1f the address and the size of a block are given, the buddy to

37

this block is easily found. Let buddy, (x) equal the address of the
buddy of a block of size 2X whose address is x. Then it is found

that:

5(+2k if X mod 2k'+l=

buddy, (x) =< . B
k {x~2k 1f x mod 2¢M=

0
X,

This funétidn is éasi];y COHpﬁtéd with an 'exclusive or' instruction
usually found in binary computer ‘instr'uc'tion repertoires.

When a block is reserved, only one word is needed to maintain
control. This one word contains a 'use' tag and the block size. If
the block is reserved, TAG(P)=0 and if the block is free or available
then TAG(P)=L1. Vhen blocks are free, one lirk field may be used for
maintaining a singly linked list, or two links may be used if doubly
linked lists are desired. In thé simulation model, singly linked
lists are used. The buddy system algorithms are as follows.

Assume a request for a buffer of size 2k .

Al: [Initialize, first entry oﬁy.] Set AVAIL(i)=i, i=2,...,m1 and
set AVATL(m)=location of first buffer of size M . Link all buffers
of size 2™ and set link of last buffer on o™ 14st = m, and set all
sizes = m.

A2: [Search lists for first list with block size Z k which is non-
empty.] Séarch AVATL(i), where k3iZm such that AVATL(1)#1. If none,
no allocation is possible for block of size 2k.

A3; [Remove first block from list with available block.] Set .
I~AVATL(1) and AVAIL(1)=LINK(L) where 2 is first availsble block.
Ab; TTest for i=k_.j If i=k‘,A .re’cizmb location L to user as starting

.addréss of résérvéd block.

A5: Tsplit 2% block and put & block on 2% List.] Set 1=1-l,

- 38

P=L+2 LINK(P)—l, SIZE(P)r-:L, AVAIL(l)-P, and go to Al..

li Buffer Release (Buddy) Assume a buffer of size 2k starting

at location L is to be released.

Rl: tCalculate buddy. addresshsing fﬁnction given earlier.] Set
P=Loc(buddy). If k=m or block at bﬁddy address is not available or
has size < 2k, go to R3.."

R2: [Remove from list and combine with buddy.] Set AVAIL(k)=LINK(P),
k=k+1. If P<L, set I~P and go to Rl.

R3: [Place block on list k.] Set LINK(L)=AVAIL(k), AVATL(k)=L,

SIZE(L)=k, and return.

E. Inputs to the Sumllatlon Models

The confidence to be placed in the outputs from a simulation
model is a function of the extent to which the model represents the
system function being simulated. Of equal importance are the assump-
tions necessarily made concerning the behavior of the parameters in
the actual system. To test the models, statistics were needed on the
behavior of the transactions in the model, where the transactions
correspond to requests for buffer allocation and release in the execu-
tive system. In particular, statistics were needed on the mquesf:
size distribution and on the rate of buffer request and releases. In
order to test the models with realistic imputs, efforts were made to
gather data characteristic of the EXEC 8 in an actual operating
envirorment, ‘ |

In order to.approximate a .ﬁquest distribution, memory maps were
constructed from printouts of the buffer pool, EX?POOL.H Fi"om the

memory maps, 1t was possible to tabﬁlate the mmber of allocations of

39

each valid reqilest‘ size at the tj:fne ‘the printout was. produced. . The'_
distributions of buffer allocatlons by request' size cbtained fram
these memory maps are shom in Flgure ITT-1. At this polnt, in-
sufficient data are available to definitely correlate variations
found in request distribﬁtions with particulaf' system operating modes,
e.g., batch or on—]ine.n It could be significant in the evaluation of
particular allocation schemés i1f such correlations are found to
exist.

The buffer request and release rates are not availsble at this
time. In the simulation process, buffer requests and releases are
being generated assuming a Poisson arrival distribution and an ex~
ponential hold time. Under these assumptions, Figure III~2 then pre-
sents the distribution used as input to the simulation process and
‘also the distribution constructed from a memory map at the end of the
simulation run. Confidence was gained in the validity of the model
since the distribution is not significantly altered as a result of

the simulation process.

F. Outputs from the S:’.mulatioﬁ

:Perfomance is being measured in terms of memory utilization and
execution time required for the allocation process. ~In order to estimate
relative execution times, data were collected on the time-consuming
operations within the allocation processes. The following operations
were tabulated for both the first-fit and buddy allocation models:
the mmber of searches of the'.available stor'age 1ist(s), ' the mmber
of memor'y collapses » the mmber’ of searches required for releasing a

buffer, and the mmber of splits required to obtaln a buff‘er of

Number of Requests

200 .
(1) 200 Allocations
(2) U468 Allocations
(3) 343 Allocations
(4) 389 Allocations
150 -
©))
100 —+
(2)
(3)
50 T—
(1)
0 1

Figure III-1.

Size of Requests
Distribution of Buffer Requests by Size.

ho

Perce.at of Total Buffers Requested

50

4o

30

20

10

I

Distribution of Buffer Requests
© Input to Simulation

Distribution of Allocated Buffers
X at End of Simulation Process

Figure ITI-2.

Size of Buffers RequestedA

‘Comparison of Buffer Request Diétributions
Irput To and Output From the Simulation Model.

L2

requested size. In order to estimate memory loss, data were obtained
on the internal memory loss-per allocation. Th:Ls type of memory -loss-
represents memory used fbr control and is tabulated in Table ITI-1.
Also contributing to memory loss is external fragmentation, a relatively
long term effect which is best seen through the use of memory maps.
See Figures III-3 to ITI-6. The effect of this factor may be quite
significant and contribute to the allocation time through an increasé
in the number of searches required to obtain a requested buffer. An
estimate of the severity of this problem can be dbtained both fram a
memory map obtained after the allocation process has been in progress
for a period of time, and the number of search operations. '

Both models, the first-fit and ‘the buddy model, were executed
using identical buffer ‘request rate, size, and hold times. The total
buffer pool was set at 13312 words of memory. Table III-1 gives a cam-
parison of the operating characteristics of the two schemes.

In view of the results cbtained, it seems clear that for the
~given distribution of requests, the buddy system is superior to the
first-fit method if the prime consideration is either time or space.
This is further substantiated by constructing and comparing the mem--
ory maps at the end of the simulation process. Figures ITI-3 and III-4
are indicative of the memory loss introduced by the buddy method and
the first-fit method respectively. In the first-fit process, the pro-
blem of external fragmentation is so severe that although there is |
sufficient space to satisfy the buffer requests, this space is frag-
mented so there is insufficient contiguous space. As a result, the
requests must be queued and safisfied as releases make memory a@lable,

or the total buffer pool is extended.

i3

BUDDY FIRST-FIT
Mean Memory Loss Per -
N Allocation _ 1 2
Total Memory Allocated 12200 12200
~ (no queue) (requests queued for 5
' buffers of size 2
......... and greater)
Mean Nunber of Collapses .012 .195
Mean Nunber of Searches 1.554 8.410

Table IIT-1. Comparison of Buddy and First-Fit

Allocation Characteristics.

Memory Location (500 word blocks)

B - Available Buffers

0 | | | 1 R
0 100 200 300 400 500
Memory Location
Buffer Pool Memory Map Resulting from Simulation of

Figure III-3.

Buddy Allocation Scheme. (Map constructed after 926

allocations and U400 releases.)

1y

Memory Location (500 word blocks)

- Avallable Buffers

13000 1 | I

125001 B m |1

12000 R B _BE =a I |
11500 Bl B n
11000m [- B AR '

10500_§ 1

10000 e 1 1
9500 | | | ' []
9000__1n | Lm

8500 A En mm] Am

8000_p 1| ' - 1
T500__mm B e n

7000 g o e L

6500 = L . mm
6000 1 o
S500mm m ' -

/5000 ‘ -

4500 - =y

4000

3500 | -

3000 _moa S mom
2500

2000
1500
1000

500

1)

0_ 1 1 1] |
0 100 200 300 : 400 500

Memory Location

Figure ITI-4. Buffer Pool Memory Map 'Resulting from Simulation of
Prst-Fit Allocation Scheme. (Map constructed after
934 allocations and 400 releases.)

46

Trus, " the buddy method 1s found to be superior in this enyiron-
ment.v. The quéstions thena:r’e’ 'Under what conditions could the
first-fit method be comparable or superior to the buddy method?' amd
'What modifications could be fade to the basic first-fit algorithm to

permit more efficient operation?'

G. First-Fit Model Modifications

In the or_iginaliversion of the first;fit model, the following

statements characterize the allocatioﬁ process: '

a) the avallable blocks are maintained on one list.

b) the request sizes are identical to those used in the buddy
method, i.e., request sizes are powers of two and it is
assumed that no waste is incurred due to restricted request
sizes.

c) two words of overhead in each block are used for control.

d) upon request for release of a block, an attempt is made to
collapse this block with adjacent blocks in both the forward
and backward direction.

1. Modification 1. Maintain Available Buffers by Size. The

first modification to this algorithm provided for the same mumber of
lists as used in the buddy method, i.e., one for each acceptable
power of two. Since only a limited number of request sizes are made,
the availsble blocks are maintained on lists by size. In Figure ITI-
5, 1t can be seen from the résulting mémory map, that the-problém"of

_ external fragmentatibn h»asrbee‘n feduéed to the point that it is com-
parablé to the buddy method. The results in Table TIT-2 indicate that

in the first—fit method,- the memory overhead per allocated block is still

&

Memory Location (500 word blocks)

13000 7

47

Mod-1

- Available Buffers
Mod-2 W23 .

12500

12000

11500

11000

10500

10000

9500

9000

8500

8000

7500

7000

6500
6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Figure III-5.

100 200 300 400 500
Memory Location
Buffer Pool Memory Maps Resulting from Simulation of

First-Fit Allocation Schemes - Mod-1 and Mod-2. (Map
constructed after 926 allocations and 400 releases.)

48

twice that found inAth-e‘.bﬁady Am.etho'c»i; and, if execittion time 1s 1m~

portant, the mean number of searches to find an available block is =

both the buddy method and the first-fit method that the mean number
of collapses per release is small. In the first-fit method, this
represents collapses in two directions, forward and backward. By
making a modification to thé Vavlgoritlrnn which permitted collapses in
the. forward direction only, several consequences were foreseen.
First, the nunber of collapses would bé reduced by a factor of two.
Next, if collapsés_ wéré attemptéd in only one direction, one word of
overhead would be adequate for control since the last word in each
bloék would not be used in the allocation process. This would make
the two methods comparable with respect to memory overhead. Finally,
a possibility of increased external fragmentation would be introduced
due to the fact that adjacent blocks might be available and unusable
bécause they were not coalesced into one block. From the memory map
given in Figure III-5, it can be seen that no appreciable increase in
external fragmentation resulted. The results in Table IIT-2 indicate
an improvement in the overhead vrequire(.i and a reduction in the nunber
of collapse operations. The inean number of search operations is
essentially unchanged.

3. ‘}\’{odifj.cat'iOh 3. Permit Variable Request 'Siz'és_t In éat:h' of

the foregolng tests, it was assumed that the number of words .request-
ed was the exact nimbér of words .néédéd by the requestor. Suppose this
were n‘ot the case. ’Ihen thé buddy rﬁethod; ‘as well as the f'irét—fit.

method, haire’ introduced'ihterinal memory. waste which has not been épparent

4

FIRST-FIT FIRST-FIT FIRST-FIT BUDDY
MCD~1 MOD-2 MOD-3 MOD-1
Mean Memory Loss Per
Allocation 4 20 .0 g 2,454 1 5.962
Total Memory Allecated 12200 12200 9552 12200
Mean Number of Collapses 035 .015 .0l5 .012
Mean Nurmber of Searches 2.713 2.713 3.262 1.554

Table TTT~2.

Comparison of Similated Allocation Charactéristics.,

[

50

or considered in the preceding camparisons. In the case of the buddy
system, 1t 1s tmpossible to eliminate this kind of memory loss, if it
exists, since the block sizes are essential to the formilation of the
buddy method. How-ev.erxﬁ",» the First-fit algorithm imposes no restric—
tion on thé' bﬁffér sizé réqﬁéstéd. The first~fit sirmﬂation model

was thén modifiéd to génératé éiact buffer requests. The or:iginal
distribﬁti_on of réquést sizes was used to determine. the range of a

_ genératéd réqﬁést sizé. A contiruous function was used to obtain the
exact mumber of words needed. For exanmple, if a block of size 32,.1
(25) » were requested in previous runs, the block size generated in

4 ang 25.

this test was some mumber between 2
A further modification was made to the First-fit algorithm to.
handle a conditioﬁ whi'ch had not been present up to this point.
Sincé thé' buffer sizés were now permitted to be any size, a block
returned to the available list could be so small that it would be
virtually useless in satisfying future requests. For example,.
suppose a reqﬁest size of n is allocated from a block of éithe'r‘n+l
or n+2 words. Then using the existing algorittm, a block of either
one or two words 1s returned to the available list. Since request
sizes were from the outset of this study assumed to be 2 2, it would
be impossible to use available blocks of < 4 words if 2 words of- -
overhead are assmnéd, or ¢ 3 words if 1 wérd of oyerhead 1s assumed.
In the interest of réturrﬁ,ng onlY’usef‘ul buffers to the available-
lists, a constant was introduced, If the difference between the -
buffer size requested and the available buffer from which the alloca~
tion was Tade Were less than same constant,. the whole block was -
allocated. In the similation model this constant was set at 4 with

&

51

the result that no block < U is placed on Vthe availablé lists.

The results obtained using this model were viewed with mixed feel-
ings. On the one hand, the total amount of memory actually allocated
was considerably less than in any previous model and the internal mem- .
ory waste per allocation was small. On the other hand, the external
fragmentation problem is again significant as. can be seen in Figure
IIT-6. Also, in Table III-2, it should be noted that the number of
searches to find an available block has increased.

Using the_buddy method and fixed requést sizes and assuming the ,
same actual utilization of buffers requested, the mean internal memory
loss per allqcation was found to be close to six words per allocation.
It is clear from the size of this number that this memory loss is
rather severe. If the buffers needed are large, there is no guarantee
that the size actually needed is close to but less than some exact
power of two. There is the same probability that it will be close to
but greater than a power of two, in which case approximately one half
of the allocated buffer is unused.

There is the possibility that the requestor »is careful to make his
requests in segments if significant intermal memory loss is incurred by
a singie request. For example, if a buffer Qf 70 words is needed, a
buffer of size 27 may be requested resulting in 57 unused locations.
The altefnative pfoéedure is to make two requests, one for a buffer of

56

and one for a puffer of 23 which results in no internal waste. If

this procedure is follwed, it is always possible to keep the internal
memory waste small. It should be noted, however, that this is a very

clear case of a space~time tradeoff‘, since in order to use memory

effectively, it may be necessary to break one request into two or more

3

7 &—

Memory Location (500 word blocks)

52

- Avallable Buffers

13000 _nm - | _ B

12500 . | | A B
12000 . 1
11500 B ' .V

11000 _ 1 | i .
10500 L . . ||

10000_
9500
9000
8500 i |
8000
7500
7000
6500
6000 m
5500_ 8 __ B
5000 | |] n
4500 R B '

4000
3500
3000

e R S R D N e R TR N e R

0 100 200 300 400 500
Memory Location

Figure III-6. Buffer Pool Memory Map Resulting from Simulation of .

First-Fit Allocation Scheme - Mod-3. (Map constructed
after 926 allocations and 400 releases.)

53

requests. As a.résﬁlt,:.thé':mrbér of buffers allocated and released

1s incréased and the total allocation time is incremented accordingly.

H, Memory Waste Determination

In an effort to éstablish' sémé nxéasﬁrablé paraméter which could
be used to determine the choice of an algorithm, the data found
earlier réf‘lecting memory utilization was analyzed »ﬁarthér. of
particular interest was a comparison of the memory allocated using
the buddy method with the memory allocated using the First-fit method.
Using the data presented in Table III-2, the following éharacterization
of memory loss was fomulatéd. The result is an indication of internal
memory waste.

If, as in the buddy System, tﬂe' size‘ of each buffer is a power
of two, and further, the requests are generated by sampling a glven
probability distribution, then the mumber. of words allocated can be

written as:

-
i_
N'Zpi2 =¢

i=1
where,
N = the number of allocations
Py = the probability that a request will be made for size.
ot |
¢y = total memory allocated.

Then, if it is assumed that internal loss is incurred due to the fixed
request sizes and if the loss is approximated, as in the similation
nodel, by using a uniform dlstribution, the space allocated using the

- Pirst-fit metho'd gi.vén' éiact'réqﬁést sizes 1is glven by;

54

i 1—1)
N[ZP(E -———2—-——)“'1{]—02
i=1
where,
N = the nunber of allocations
P ;= tl;le probability that a request w111 be made for size
2

k = constant overhead per allocated buffer
5 = total memory allocated.

Considering memory usage only, a cutoff point can be obtained
which can be used as a factor in determining an internal loss criterion
which is a function of the average request size. The result of re-

writing the above equations is, for the buddy method,

N'X =N sz

i=1
and for the first-fit method:

NIX-1/2X + 14X +kl=c,
where X is the aveffage request size. Now setting c17C5 and solving,
X = 3/ X + k
X = b4 k.

'Ihis indicates that under the above assumptions whenever the
average request size 1is greater' than four times the average internal
loss of the first-fit methcd, more memory Will be used by the buddy
allocation scheme than by the first-fit method. Since intefna.l memory
loss is not the only consideration, this factor would not be sufficient,
taken alone, to determine that the allocation strategy should be changed.
'Ihls is particularly true in view of the fact that the allocation

time using the buddy method is less than that of ‘the flrst-flt.

55

Ultimately, the criterion used éhould be based on the allocation and
relea.se‘ times, memory usage, and possibly the measured rate of change
in the request distributions. Further, in a particular app]ication,
the variables, time and'svpace, may be assigned weights as a ﬁmctioh
of their relative importance in a given operating system.

In the interest of substantiating the conclusions of the analysis
of relative internal memory loss incurred by the buddy and first-fit
allocation schemes, special simulation runs were made. The request
distribution used for this aspect of the study provided an average
request size of 21.3 words per allocation. Both the buddy and the
first-fit algoﬁtl‘nns were used. In the first run the average memory
- 1oss in the first-fit method was 2.3 words per allocation. From the
analysis above, if ')5, thé average réquest size, is greater than four
times the average internal loss found in the first-fit method, then
more memory will be needed using the buddy method than used by the
first-fit method. The simulation outputs supported this conclusion.
The first-fit allocation routine was then modified so that the average
internal loss per allocation was increased to 4.3, Again the memory
allocated using the first-fit method was sdméwhat less than that
allocated using the buddy method. A final modification was made ﬁo
the first-fit routine to make the average internal loss per allocatién
equal to 8.3 words per allocation which is greater than 21.3/4 which
is the crossover figure. In this case, more memory was used by the
first-fit method than in the buddy method. . This series of simulation
runs then validates the results of the analyéis. See Table III-3 for
a éomparison of the Simulation’ results produced in the sequence of the

runs described above.

. Current

. . Total - Avergge Average Allocation
Memory Used | ;Number .of Entries |. .'_Memor'y Ioss per Allocation | ... per Request . .
Buddy 9660 19800 5.575 21.3
First-Fit (1) 8248 16788 2.318 18.1
First-Fit (2) 9104 18552 4,277 20.4
First-Fit (3) - 10952 22400 8.277 23.2

Table III-3. Comparison of Allocated Memory for Different

Average Memory Loss per Allocation.

%

CHAPTER TV
INVESTIGATION OF ADAPTIVE ALIOCATION STRATEGIES

The remainder of this thesis ié concerned with the results of
an attempt to design alternative algorithms which are compatible and
can be executed in turn as a function of the operating envirorment.
The implementation of an adaptive scheme in a real operating system
depends on the solution of two problems. The first involves select-
ing criteria which accurately reflect change or rate of change of
conditions in an operating environment and providing a monitoring
device which detects and signals the occurrence and direction of any
significant change. The second problem involves devising alter—
native algorithms and determining the operating conditions under
which the& are most efficient. If having provided for a monitor
'which is capable of deteeting operating environmental change, and in
addition, if having aetermined which algorithm permits most efficient
operation given the envirorment, the remaining objective is to pro~
vide a mechanism for automatically replacing one algorithm by another
without interruption or serious degradation to the system 6peration.
The basic algorithms for the dynamic allocation of buffer storage _
which were simulated individually are used.

In Chapter IIT-F, it was found that the buddy.method is most
efficient in time required to allocate and release bufférs and in
memory utilization if small buffers are predominant in the request

distribution. On the other hand, it was found that the first-fit

57

58

method allows for econamic use of memory in cases where the buffers
| requested are lavge and the slze of the buffer allocated is unre-
stricted, unlike the power-of-two restriction implicit in the buddy
method. |

A Conmparison of Algorithm Charac’peristics '

A brief review of the steps taken in similating the basic
algorithms is appropriaté héré sincé thé' characteristics of the allo-
cation methodé are détennirﬁng factors in making the algorithms com~
patible. The buddy method requires that allocations be made in

“blocks which are powers of two., In this study all availablé buffer
space is initially placed on one list in bloéks of size 29 .. The
range éf acceptéble réquests' was from 22 to 28 words in poﬁrers of 2.
In turn, one list was maintained for each power of two, from 2 to 8.
In the allocation phase the split operation insures thét each avall-
able buffer on a given 1list is a power of two and that the start
location, x, of that block is such that x modulo Zi is zero. The
proper release and coilapse of adj acent blocks are also dependent on
the size and start loéation of the buddy of the block being released.

In the first-fit method as simulated originally, requests for
buffers were in powers of two and all available storage was main- |
tained on one list. It was found that the nurber of searches requir-
ed to Find an avallable block of adequate size was large and also
that coré was fragnéntéd to sﬁch' an éitent that'reqli-ests for block
slzes 22 and Ag;r*‘eater were qaeued A modification was made to main- -
tain the avallable storage on 8 1ists as in the buddy system. The

mmber of 1ists and the size of the blocks maintained is arbitrary.

58

The selection of this schieme wa.s in anticipation of an investigation
of compatible modes of allocation, The result was that fragmentation
of core and the avéfégé fumber of séérchés to locate an available \
block of adequate size were reduced, Further modifications to the
first~fit algorithm I'édﬁcéd the overhead pér’ allocation to one word;,..
making collapsé of adj acént blocks possible m thé forward direction
only. Next, the request sizes were unrestricted, which resulted in
the maintenance of some essentially unusable small blocks. Finally,
to e]j:minaté this 1attér éffect',. if thé- différeﬁce-between the buffer+
size requested and thé available buffer from which the allocation was
made were less than U s the ént;ire block was allocated. The descrip—
 tion of this last modification is correct but incomplete. The imple—
mentation of this modification also insured that the size of every
‘buffer allocated would be an even multiple of 4, where 4. is the-
smallest useful block ma_lntamed on the available storage lists. The -
internal memory loss per allocation intreduced by'this modification is
.always' less than 4. Here again the attempt to maintain the available-
storage blocks with start locations which are a power of two was.
deliberate. It was hoped that the transition from the first-fit method

to the buddy method would be facilitated.
The algorithms at this point have the following characteristics

in common. Available storage is maintained on eight lists, the start .
location of any allocated or available buffer is a power of 2, and
requests are irrestricted as to size. The difference in the two
methods are the following. The buddy method allocates blocks im
powers of two while the first-fit allocates blocks in miltiples of k..

' In the buddy scheme the start location of every block on an available

60
list 2:.L is a multiple of 2l In the first-fit method to the start loca-
tion of a block on an available list 2i is a multiple of four and only
by coincidence is it a multiple of 2i. The buddy allocation method does
not place any-limit on the internal memory loss per allocation. The
first-fit method insures that the internal memory loss per allocation
will be less than four. This upper limit on internal memory loss which
is characteristic of the first-fit method is the basis for:attempting to
make the two modes of allocation interchangesable in an operating environ-
ment in which the power of two block size restriction produces a high

average memory loss per allocation when using the buddy method.

B. Adaptive Strategies Considered

In view of the differences in the two methods, the ﬁransition
from the buddy method to the first—f'if, method presented no difficulties
The dependence of efficient split and collapse operations on the block
size in the buddy méthod presénted problems in going from the first-
fit method to the buddy method. An analysis of these problems and
attempts at théir solution then beéome of primary importance. |

Some of the alternative approaches considered to resolve these
problems are discussed here prior to presenting the scheme which was
simulated. For a solution to be acceptable the following conditions
were used as guidelines. The efficiency of the alloc_ation and
release operations in the buddy method should be 'preserved. If
either operation must be degraded, then it should be the release oper-
ation since the time required to satisfy a request for a buffer in a

time-sharing envirorment is usually more critical than the time to

61

return buffers to the avallable storage lists. Further, if either
the normal allocation or the réléaSé 6péfétion st be degr'aded, then
1t should be for a limited period of time after which the allocation
procéss shoﬁld return to its nbrmal éf‘ficiéncy".b

| If the t:'l:mé to honor réqﬁésts were no problém‘, then when the
buddy method 1s initiated, all buffers on the available lists could
be tested and modified to be acceptable to the buddy method. This
diréct approach to thé problém_ gu.arantéés thé lattér condition, that
is ljznitéd intérr*uption. This is not feasiblé since thé' time requinr-
ed to modify theSé Idsts 1s indeterminate and system opérations for
which the buffér's are reqtiésted are very often time sensitive.

In both the first-fit and the buddy method, the same rumber of -
lists and list pointers to availabie storagé are maintained. If the
same 1ist is used for both methods, the following difficulties aré
encmmteréd. 'Iheré is no assurancé that a buffer on the list is the
proper size or has an acceptable start location. This means that in
the allocation process each buffer must be tested for size and start
location. It may be found that a list is not empty, however, no
buffer of adequate size is on the list. If this is the case, then
the next higher list must be searched. When a buffer ‘i's fourd of
adequate size, the procedure for allocating that block may be time-
consuming. The following situations may exist. If the buffer start
“location is acceptablé;' an allocation is gliaranteed; howevér; if the
»buffer' is 1a_rgér than r'eqﬁested.,' the remainder must be pl_acéd' on the
appropriate 1ist vhich may be any list with buffers of size less than
or éqhal to. thé.buffér’ sizé 'r'-eqﬁést.ed'.” Ir .thé' 'start‘ location 1s not -
acceptable, then the lowest acceptable start location in the available

/

62

buffer must be determined. ‘Ihé' initial portion of the buffer must be
placed on another list énd now anothér tést on size is needed. If the
size is adequate, then procéed as for the case with an acceptable |
start location outlined above. If thé size is now inadequate,
continue the list search until a block of adequate size is encountered
and repeat the test, split, and réturn of unneededvportions of buffers
to the appropriate availabie lists.

In viéw of the difficulties presént in going from the first-fit
fo the buddy method, suppose then that the First-fit method is modi~
fied so that buffers are always allocated with acceptable start
locations as required in the btiddy méthod. This reduces the number of
operations required to allocaté in t-hé' buddy method but it is still
necessary to return portions of buffers to the appropriate list and a
test for correct sizé mist b‘é madé on évery buffer considered for
allocation. Further, the'ré is no convénient way of determining when
return to normal buddy allocation can be made.

The ne:ﬁrt modification considered was that of maintaining separate
lists of available storage in the two methods. Now when the buddy
method is initiated, its lists are empty. Allocations can be made
from the first-fit lists as outlined above until the lisf:s are deplet-
ed. During this time the allocation of a buffer may be a lengthy
procedure. The value of this approach lies in the fact that the dura-
tion of' degraded performance is limited, that is, until the first-fit

lists are empty, after which normal buddy allocation can be resumed.

C. Adaptive Strategy Simulated

The allocation scheme selected for simulation is as follows. Two

63

séparatet lists of .pointérs to available Storagé Yarie maintained. When
golng from the buddy method to the Pirst<fit method, the header list
consisting of elght polnters to available buffers is transferred
directly to the Pirst-fit header list and the buddy header list is
cleared. Allocations are then made using the first-fit allocation
and release process with no further interruption to the system. When
it is determined that the buddy allocation method should be imitiated,
a word is set equal to the largest buffer on the first-fit available
list..

With each buffer request, the buddy routine is then entered. If
thé' buffér réquested is léss than the flag word, thé first~fit alloca~
tion routine is entered, and if possible thé' allocation is made by
that routine. If the buffer requested can not be satisfied, the flag
word is resét indicating that all future réquests equal to or gr'eatef
than the flag word should be allocated using the buddy method. Very
rapidly /the first-fit lists are depleted and all allocations are then
made using the buddy allocation method. The time loss in this pro-
cess is the time it takes foi* the one test which determines whether
the allocation should be made using the First-fit or the buddy method.
Memory loss is incurred during the transition phase since both |
| allocation schemes mist be present in core until the first-~fit listsh'
are depleted. A savings in Temory space per allocation may be realiz-
ed since the first-fit .oyérhead ,pér' allocation is still limited and in
 general 1s less than that of the buddy method.

The foregolng dlscussion has been concerned with the allocation
procé‘sS'priJnari]..y.. | The ‘effect on the release process must also be

considered, Sihce the buffer being released could have been

64

allocated using elther. the buddy method or the First~fit method, the
size and start location must be checked prior to returning a buffer
to an avallable storage list. If the buffer were allocated using the
bnddy allocation; it is clear that the normal r'elease procedﬁre could
be followed, If the buffer were allocated using the first-fit
method, then the release procedure becames more imvolved. If the
size 1s not a power of two, it 1s necessa_r’y to che'ck the' start
location, determine the largest buffer for which that start location
is acceptable ,'rétnrn a buffer to the list of that size, reduce the
size of the' retnmed bﬁffer by that amoﬁnt and c:ontirme_ this process
until the entire buffer has been returned to the available lists. To
eliminate the initial te_sting prior to release in the case where the
allocation was made using the buddy method, it was decided that the
buddy allocation shonld insert a negative sign on the size of the
buffer when it is allocated. When a buffer is returned which was
allocated using the buddy- method, a sign test is the only additional
operation introduced in the release process.

When buffers are returned which were allocated using the first-
fit method, the splitting operations required to return the buffer to
the appropriate available lists increases the number of small buf'fers ‘
on the'.available lists. This 1s not a serious problem since the ' |
primary reason for making a transition to the bndd;y method is because
the ave,rfage buffer size réq(iestéd' is decreasing.v The only serious
penalty paid is in the tine required to split and retirn the buffers
to. the lists if they were allocated using the fiI’St—flu nethod and
are not a power of two These' operations become more ,_nfrequent

after the buddy allocation ha.s been in operation for a per'iod of t:!:me ’

65

D, Results ftr'om Simulation of Adaptive Model.

‘I'he followlng conditions were used for the final smulation nns -
in this study. Four request distributionsmwere selected' with .average
request' sizes of 1_7-.-3;’ 211».-8,- 187, and 37:11 respectively. The distri-
butions were used in pairs, 17.3 with 24.8, and 18.7 with 37.4. (See
Flgures TV-1 and IV—2.-) The distributions selected are not ﬁpresen—
tative of any actual operating system ﬁquést distributions, but are
used to represent cha_nges in request distributions which could occur
within an operating systern. 'I‘.he total numbér of buff'ers which were
both allocated and returned to available storage was set at 1000. The
adaptive system was run using the buddy method to allocate requests
~ generated using .distribution I followed by the first-fit method to
allocate requests generated using distribution IT. The methods‘were
then reversed so that the first-fit method was used with distribution -
I and the buddy method W:Lth distribution IT. Two additional runs
were made, one with the buddy method throughout and one with the first-
fit throughout. The distributions were'then interchanged and the
same procedure was followed to produce four more runs. The second
pair of distributions, distribution III and IV, were used in the same
way to compiete the similation study.

Table IV-1 presents the memory usage results of the_'_ simulation
runs using the request distributions I and II. Table IV-2 pres.ents. '
the resilts using distributions ITT and IV. In the first set of data,
no queues' of réquests Were formed. All buffers could be allocated as -
requested. In the second set of data, queues were formed in all Tuns.
In an actial system, Tmore memory would be allocated to the buffer pool

so that queues would not be present In the s:tmulation this procedure

R

663

1.0

] L]] i]]

2 3 M5 b Bt
Buffer Size
Cumulative Request Distributions I and II

Probability of Request Size

2 3 b 5 b T
Request Distributions I and IT

Figure IV-1. Buffer Request Distributions I and IT Used in.
Adaptive Method.

Probability of Request Size

67

2 3 oM 5 b T B

Cumulative Request Distributions III and IV

Figure IV-2.

AL 11T Iv

3 XIII = 18.'7

20 : _ -
Xy = 37.4

AL

| (
2 3 5 b B
Request Distributions IIT and IV -

Buffer Request Distributions III and IV Used in
Adaptive Method.

68

:Cﬁ:‘rrént‘m . Total - bAverage ' Qu'euesi -
Memory - Number NMemory -

o :':':':’:':':':':':‘.".":':':'.";':‘.':‘:‘:;':‘?9*?‘?‘??"?3.':‘:';3?‘??1??:.":‘:';’;L:‘.’st.‘:': e
First-Fit - Fix:s'ﬁ-}?it T006t 2u9'7§ 2324 Neme
g o e S i 398 e
First-Fit - Buddy 11'}f12 57480 3.910 None
Buddy - Buddy 1210’4 29908 5.0448 None

First-Fit » First-Fit 8608 27004 2.373 None
First-Fit - Buddy 9556 28416 3.267 None
Buddy - First-Fit 9304 30908 4,845 None
Buddy - Buddy 10252 32320 5.740 None

 Distribution II followed by Distribution I.

Table. Ian Results of Slmula,tion Runs
Tsing Request Dis’cributions T and II
with Average Request Sizes of 17 3 and 24 8 Respecf:Wely 3

After 1579 Requests and 1000 Releases.

69

Mumber Current . Total Requests Total Ayerage

. of Memory Number. on Requests =~ Memory
R Requests Corvgtents:.:“.mtriesﬁ Queue SR Loss
FaF 1574 13040 32160 640 32800 2.410
B->F 1584 13380 34980 2048 37028 4,340
F->B 1579 12220 32328 6368 38696 4.398
B~+>B 1567 14268 37584 4128 h1712 6.941
Distribution III followed by Distribution IV.

F>F 1564 10928 37364 0 37364 2.398
F+B 1541 11388 38232 - 392 38624 3.360
B+ F 1598 13592 44312 4608 48920 6.451
B+B 1643 14828 U7076 ’4928» 52004 8.159

 Distribution IV followed by Distribution III.

Table IV~2.. Results of Similation Runs
- Using Réqﬁést Distribﬁtions' IIT ard IV,

with Average Request Sizes of 18.7 and 37.4 Respectively,

After 1000 Releases.

70

was not possible, 80 the 1ength of . the queues serve as a measure of
the . severity of the memory 1oss 1ncurred using the altematlve '
allocation schem'es' to handle different .request distr’ibutions.'

'Ihe results obtaihed are__discussed in ter'ms of memory loss only_
since the' ‘codihg of the' adaptive model was not optimized and, as a
rlesult,. timing perfox'mance data were not available. In all cases, it
was found that internal memory loss was at a minimum when the First-fit
was used .throughout. The maximum internal memory loss occurred when
the buddy method-was_ used throughout. These results are as expected
ahd f‘urther‘ substahtiate the results of the analysis of Chapter IIT-H.
Beyond this obser'vatioh, these cases are of little interest.

of special interest here is the performance of the two methods
employed edaptively. The total memor'y allocated was found to be
least when_‘the buddy method was used to allocate the smaller average |
request sizes gen_erated using distribution I followed by the first-
fit method to allocate the larger average request sigzes genefated
using distribution II. This can be seen from the data presented in
Tsble IV-1. The total memory used in this case was 27404 words.
Keeping the distributions in the same order and reversing the methods
used with them respectively, the total memory used was 27480 words.
The differénc’e in this case was 76 words, a very small differential.
When the first~fit method was used to allocate req_uests generated
using distribution IT followed by the buddy method to allocate
requests generated using distribution I, the memory used was 281416
words Again reversmg the methods and keeplng the distributions in
the same order, the memor'y used was 30908 words. here, the dlfference

is 1492 words or- approx:.mately a 5% memory :anrease, a slightly

71

larger aifferential but probably ot significant.

Using distributions TIT and IV, queues were formed. Used in this
comparison 1s the tdtél rﬁmbér[of‘ words vr-eqﬁ-est_éd, that is the nurber
of words‘ actﬁa_lly allocatéd' and thé' mﬁmbér of words represented by
queued requests. The buddy method used with distribution ITT follow-
ed by the first-fit used with distribution IV resulted in requests
totaling 37028 words of memory By réversi_ng the methods, 38696
words were réqﬁésted. The difference is 1678 words or approximately
a 5% memory increase. Wnen the first-fit method was used with - ’
distribution TV followed by the buddy method with distribution IIT,
the total mémor’y réquésted was 38624 words. Reversing the methods
resulted in mémory réquests of 48920 words. The difference here is
9296 words, an approximate increase in memory of 25%, which is quite
significant. The reason for this is that the buddy method, used to
allocate large average request sizes, had introduced internal waste and
as a result had quickly excéedéd the buffer pool. Subsequent largé
requests were then queued so that when the first-fit method was initiat-
ed to handle the smaller requests, there-were many large request on
queues which still needed to be.serviced.

Table IV-3 presents data pertinent to the queue formation in
thése last runs. The presence of queues is important. The number of
queue entries at tﬁe' end of the run and the maximum contents of thé '
queues indicaté the intéfactivé effect of the two methods when used
adaptively. In golng fram distribution IV to IIT, the mumber of queue
entriés at the end of the Sizmilation r'un is an indication of how well
a givénlméthod recovers and handles qﬁéﬁés once they have been formed.
It should be pointed out that the buddy method used throughout gave

&

72

the worst recovery perfoﬁnance. This can be seen in Table IV-3. It
was also evidenced in this case by the increased simulation run time.

In using distribution III followed by distribution IV, the queue
formation was worst when going from the first-fit method to the buddy
method. This 1s a result of the external fragmentation of returned
buffers which wefe allocated using the first-fit method. Since some
of the large bufférs rétﬁr'ned-were split, there was an increase in the
number of reqﬁests' for la_rgé buffers whicﬁ could not be satisfiled.

In smrnary; it was found that in all cases, the total memory
allocated waé 1.ess“ when the buddy method was used to allocate the
smaller réquest s:!.zés and thé first-fit was used to allocate the
larger request sizes. When no queues are formed, the difference is
minimal and the use of an adaptive strategy does not appear to be
warranted. It is precisely the case where the memory pool is limited
that an adaptive strategy is needed. When queues are formed and the
buddy method is used witﬁ the larger average request sizes, the inter-
nal memory waste is signif‘icarit and the.dufation of degraded allocatién
performance continues even beyond the point at which the request dis- |

tribution again becomes ‘favorable for use with the buddy method. It
| is quite clear in such cases that advantage is realized by using the
allocation methods adaptively as a function of the request distr'ibutiéns. _

In using such an adaptive structure where the method used is
based on the request distribution, it appears that the use of the
average request size at any given time may not be sufficient. 'Ihe
rate of change in request sizes may be equally importént. Using the

average request size and the rate of change in request size, it would

73
' Buffer Maximam - ~ Total Queue Contents
U USize. Ul Ques Length | Requests Queusd | .at End of Run
F~F 22 2 P 0
20 6 6 6
e e 2 2
B-F 29 5 6 0
26 12 18 12
ol 6 7 6
e Lo e 2 2
F~B 22 37 108 37
- n 79 n
of 10 15 10
.............. d s 8 5
B-B 2 a 101 21
20 22 | 57 22
ol 6 © 18 o 6
o8 5 8 5

Distribution IV followed by Distribution ITI

with Average Request Sizes of 37.4 and 18.7 Respectivel'y'.

Table IV-3. Queue Formation Produced as Function of
Adaptive Scheme Employéd'.

7}4

... .Buffer . . . Maximm Total. Queue Contents
o ioeiSige”Quéus Length''! Requésts Queued " at End of Run

LA e e o a4 ™

1

2

N
-3
R

................. 2

o o o o o

N
w
o .
L

"
N
o
Ul
o o o o

22 27 155
2 o1 79

o

ol 10 . 31 4
......... B gg g g

B+ B 22 - 2l2 4
23 T T
2* 2 28 8
27 235 10
2 21 104 8
of 14 36 8

Distribution IIT followed by Distribution IV
with Average Request Size of 18.7 and 37.4 Respectively.
Table TV~3 (continued). Queue Formatlion Produced

as Ftinction of Adaptivé Schémé Employéd'.

75

be possible to:prédict‘tha’é altémativé .méthods shoiildbeémplo_yed' SO
that the methods could be Interchanged prior to depleting the buffer
pool and prior to experiencing degraded performance in the allocatlion
process. |

Assuming that the modifications made to the basic methods did
not change their relative allocation times significantly, that is, the
buddy method is faster than the First-fit method, and given the
results of this study that the inter'nal memory ‘loss incurred by the
first-fit is less than that of the buddy method, then it follows that
an adaptive schéme shouid be vemployed. As a result, optimal space-time
tradeoffs can be made as the system is operating. In an actual operating
system, this requires that there be internal system monitoring which
provides an estimate of average request sizes and the rate of change
in the request size. With this information and an adpative strategy,
such as that simulated in this study, the algorithms could be inter-
changed based on the system operating characteristics prior to system
degr'ation which results as a function of a given algorithm being used

in an unfavorable envirorment.

: 10.

12.

13.

14,

BIBLIOGRAPHY

Rosenthal, S., "Analytical Technique for Automatic Data Process-
ing Acquisition", Proc. AFIPS 1964 SJCC, 359-366.

Joslin, E. 0., "Cost-Value Technique for Evaluation of Computer
System Proposals", Proc. AFIPS 1964 SJCC, 367-381.

Auerbach Standard EDP Reports, Auerbach Information, Inc.,
Philadelphia, Pa.

Herman, D. J., Threr, F. C., "The Use of a Computer to Evaluate
Computers", Proc. AFIPS 1964 SJCC, 383-395.

Ihrer, F. C., "Computer Performance Projected Through Simulation",
Computer Autom., 17,4 (April 1967), 22-27.

Calingaert, P., "System Performance Evaluation: Survey and
Appraisal”, CACM 10,1 (January 1967), 12-18.

Shemer, J. E., "A Mathematical Analysis of Input/Output Inter—
ference in a Time-Sharing Information Processing System",

- Technical Information Series R63CD13, GE Co., Phoenix, Arizona,

November 1963. '

Shemer, J. E., Shippey, G. A., "Statistical Analysis of Paged
and Segmented Computer Systems', IEEE Trans. EC-15 (December
1966), 855-863.

Denning, P. J., "Thrashing: TIts Causes and Its Prevention",
Proc. AFIPS 1968 FJCC, 915-922.

Coffman, E. G., "Analysis of Two Time-Sharing Algorithms .
Designed for Limited Swapping", J.ACM 15,3 (July 1968), 341-353.

Coffman, E. G., Kleinrock, L., "Feedback Queueing Models for
Time-Shared Systems", J.ACM 15,4 (October 1968), 549-576.

Denning, P. J., "Resource Allocation in Multiprocess Computer
Systems", (Ph.D. Dissertation), Tech. Report. MAC-TR-50, MIT,
Cambridge, Mass., 1968.

General Purpose System Simulator IT (GPSS-II). "Reference
Marual", Univac Manual No. UP-B129.

Markowitz, H. M., Hausner, B., Karr, H. W., Simscript: A Simu-

- lation Programming Language, Prentice Hall, Inc., Englewood

Cliffs, New Jersey, 1963.

76

| 15.

16.
17.
18.
19.

20.
21.

22.

23.

24,

25.

26.

27.

28.

29.

7

Maruel, (1BM confldentlai7§ TBM Form No. Y20-0130.

Cohen, L. J., Associates, Szétem and Software Simulator: S3,
Technical Manual, (AD679-269 — AD679-272).

Chu, Y., "An Algol ILike Computer Design Language", CACM 8,10
(October 1965), 607-615.

Grice, A., Hargol - A Hardware Oriented Algol Language, Internal
Report No. VA5, August 1966, A/S Regnecentralen, Copenhagen,
Dermark.

Pinkerton, T. B., Program Behavior and Control in Virtual Storage
Conputer Systems, (Ph.D. Dissertation), Technical Report 4,
University of Michigan, Ann Arbor, Michigan, 1968.

Saltzer, J. H., "The Instrumentation of Multics", ACM 2nd
Symposium on O/S ‘Principles, October 1969, 167-1T74.

Conti, C., "System Aspects: System/360 Model 92", Proc¢. AFIPS

1964 FJCC, 81-95.

Estrin, G., Hopkins, D., Coggan, B., Crocker, S. D., "SNUPER -
Computer - A Computer 1n Instrumentatlon Automatlon", Proc AFTPS

1967 SJCC, 645-656.

Russell, E. C., Estrin, G., "Measurement Based Automatic Analysis
of Fortran Progr-ams" Proc AFTPS 1969 SJCC, vol. 34, 723-732.

SchuJinan F. D., "Hardware Measurement Device for IBM System/360
'I‘jme—-Sharlng Evaluation", Proc. ACM 22nd National Conference,
103-109.

Crooke, S., Minker, J., "Key Word in Context Index and Bibliogra-
phy on Computer Evaluatlon Techniques", University of Maryland
Technical Report 69-100, Decenber 1969.

Deniston, W. R., "SIPE: A TSS/360 Software Measurement
Technique",. Proc ‘of ACM 24th National Conference, 229-245,

Roek, D. J., Emerson, W. D., ™A Hardware Instrumentation Approach
to Evaluatlon of a Large Scale System", Proc. of ACM 24th
National Conference, 351-367.

Systems Measurement Software (SMS/360), User's Guide for CUE~1,

Boole and Babbage, Report No. 135, February 1969.

Systems Measurement Software (SMS/360), User's Guide for PPE,
Boole and Babbage, Report No. 41, May 1969

30.
31.
32.

33.

78

News Briefs in Datamation, March 1969, p. 109.

Demning, P. J., "A Statistical Model for Console Behavior in
Multiuser Computers", CACM 11,9 (September 1965), 605-612.

Knuth, D. E., The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison - Wesley, Menlo Park, California, 1963.

Minker, J., Crooke, S., Yeh, J., "Analysis of Data Processing

- Systems", Umver51ty of Maryland Technical Report No. 69-99,

December 1969, p. 103.

